scholarly journals A point mutation in a type I procollagen gene converts glycine 748 of the alpha 1 chain to cysteine and destabilizes the triple helix in a lethal variant of osteogenesis imperfecta.

1987 ◽  
Vol 262 (30) ◽  
pp. 14737-14744 ◽  
Author(s):  
B E Vogel ◽  
R R Minor ◽  
M Freund ◽  
D J Prockop
1991 ◽  
Vol 279 (3) ◽  
pp. 747-752 ◽  
Author(s):  
B Steinmann ◽  
A Westerhausen ◽  
C D Constantinou ◽  
A Superti-Furga ◽  
D J Prockop

Skin fibroblasts from a proband with lethal osteogenesis imperfecta synthesized a type I procollagen containing a cysteine residue in the alpha 1(I) helical domain. Assay of thermal stability of the triple helix by proteinase digestion demonstrated a decreased temperature for thermal unfolding of the protein. Of special importance was the observation that assays of thermal stability by proteinase digestion revealed two bands present in a 2:1 ratio of about 140 and 70 kDa; the 140 kDa band was reducible to a 70 kDa band. Further analysis of the fragments demonstrated that the cysteine mutation produced a local unfolding of the triple helix around residue 700 and apparently exposed the arginine residue at position 704 in both the alpha 1(I) and alpha 2(I) chains. Analysis of cDNAs and genomic DNAs demonstrated a single-base mutation that changed the GGT codon for glycine-691 of the alpha 1(I) chain to a TGT codon for cysteine. The mutation was not found in DNA from either of the proband's parents. Since the proteinase assay of helical stability generated a fragment of 700 residues that retained disulphide-bonded cysteine residues at alpha 1-691, the results provide one of the first indications that glycine substitutions in type I procollagen can alter the conformation of the triple helix at a site that is C-terminal to the site of the substitution.


1995 ◽  
Vol 311 (3) ◽  
pp. 815-820 ◽  
Author(s):  
A A Culbert ◽  
M P Lowe ◽  
M Atkinson ◽  
P H Byers ◽  
G A Wallis ◽  
...  

We identified two infants with lethal (type II) osteogenesis imperfecta (OI) who were heterozygous for mutations in the COL1A1 gene that resulted in substitutions of aspartic acid for glycine at position 220 and arginine for glycine at position 664 in the product of one COL1A1 allele in each individual. In normal age- and site-matched bone, approximately 70% (by number) of the collagen fibrils were encrusted with plate-like crystallites of hydroxyapatite. In contrast, approximately 5% (by number) of the collagen fibrils in the probands' bone contained crystallites. In contrast with normal bone, the c-axes of hydroxyapatite crystallites were sometimes poorly aligned with the long axis of fibrils obtained from OI bone. Chemical analysis showed that the OI samples contained normal amounts of calcium. The probands' bone samples contained type I collagen, overmodified type I collagen and elevated levels of type III and V collagens. On the basis of biochemical and morphological data, the fibrils in the OI samples were co-polymers of normal and mutant collagen. The results are consistent with a model of fibril mineralization in which the presence of abnormal type I collagen prevents normal collagen in the same fibril from incorporating hydroxyapatite crystallites.


2011 ◽  
Vol 20 (8) ◽  
pp. 1595-1609 ◽  
Author(s):  
Shawna M. Pyott ◽  
Ulrike Schwarze ◽  
Helena E. Christiansen ◽  
Melanie G. Pepin ◽  
Dru F. Leistritz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document