local unfolding
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 16)

H-INDEX

19
(FIVE YEARS 4)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Phattaraporn Morris ◽  
Ribia García-Arrazola ◽  
Leonardo Rios-Solis ◽  
Paul A. Dalby

AbstractTransketolase (TK) has been previously engineered, using semi-rational directed evolution and substrate walking, to accept increasingly aliphatic, cyclic, and then aromatic substrates. This has ultimately led to the poor water solubility of new substrates, as a potential bottleneck to further exploitation of this enzyme in biocatalysis. Here we used a range of biophysical studies to characterise the response of both E. coli apo- and holo-TK activity and structure to a range of polar organic co-solvents: acetonitrile (AcCN), n-butanol (nBuOH), ethyl acetate (EtOAc), isopropanol (iPrOH), and tetrahydrofuran (THF). The mechanism of enzyme deactivation was found to be predominantly via solvent-induced local unfolding. Holo-TK is thermodynamically more stable than apo-TK and yet for four of the five co-solvents it retained less activity than apo-TK after exposure to organic solvents, indicating that solvent tolerance was not simply correlated to global conformational stability. The co-solvent concentrations required for complete enzyme inactivation was inversely proportional to co-solvent log(P), while the unfolding rate was directly proportional, indicating that the solvents interact with and partially unfold the enzyme through hydrophobic contacts. Small amounts of aggregate formed in some cases, but this was not sufficient to explain the enzyme inactivation. TK was found to be tolerant to 15% (v/v) iPrOH, 10% (v/v) AcCN, or 6% (v/v) nBuOH over 3 h. This work indicates that future attempts to engineer the enzyme to better tolerate co-solvents should focus on increasing the stability of the protein to local unfolding, particularly in and around the cofactor-binding loops.


2021 ◽  
pp. 247255522199110
Author(s):  
Johanna M. Kastl ◽  
Gareth Davies ◽  
Eleanor Godsman ◽  
Geoffrey A. Holdgate

Targeted protein degradation (TPD) is a recent strategy, utilizing the cell’s proteostasis machinery to deplete specific proteins. This represents a paradigm shift in early drug discovery, away from occupancy-driven to event-driven mechanisms. Recent efforts have focused on the development of proteolysis-targeting chimeras (PROTACs). These heterobifunctional molecules combine a target-specific binding moiety linked to an E3 ligase ligand and trigger selective ubiquitination of the target protein, marking it for proteasomal degradation. While these molecules can be highly efficacious, they generally have unfavorable physicochemical properties due to their large size. In contrast, smaller molecules that induce degradation could represent an attractive, simple option to overcoming the limitations of both traditional modulators and PROTACs. These molecules may have a range of mechanisms: recruitment of an E3 ligase (molecular glues), introduction of hydrophobic areas, or inducing local unfolding, each of which triggers degradation. We recently completed a high-throughput screen of 111,000 compounds in a cellular HiBiT assay in an effort to identify such molecules. Preliminary analysis indicates that we have been able to identify alternative small-molecule degraders. We highlight methods for triage, characterization, selectivity, and mode of action. In summary, we believe that these types of small-molecule degraders, which may possibly have more acceptable physicochemical properties than the inherently larger heterobifunctional molecules, are an exciting approach for inducing TPD, and we illustrate that a general screening approach can be successful in identifying useful start points for developing such molecules.


2021 ◽  
Vol 7 ◽  
Author(s):  
Florian Hofer ◽  
Anna S. Kamenik ◽  
Monica L. Fernández-Quintero ◽  
Johannes Kraml ◽  
Klaus R. Liedl

Susceptibility to endosomal degradation is a decisive contribution to a protein's immunogenicity. It is assumed that the processing kinetics of structured proteins are inherently linked to their probability of local unfolding. In this study, we quantify the impact of endosomal acidification on the conformational stability of the major timothy grass pollen allergen Phl p 6. We use state of the art sampling approaches in combination with constant pH MD techniques to profile pH-dependent local unfolding events in atomistic detail. Integrating our findings into the current view on type 1 allergic sensitization, we characterize local protein dynamics in the context of proteolytic degradation at neutral and acidic pH for the wild type protein and point mutants with varying proteolytic stability. We analyze extensive simulation data using Markov state models and retrieve highly reliable thermodynamic and kinetic information at varying pH levels. Thereby we capture the impact of endolysosomal acidification on the structure and dynamics of the Phl p 6 mutants. We find that upon protonation at lower pH values, the conformational flexibilities in key areas of the wild type protein, i.e., T-cell epitopes and early proteolytic cleavage sites, increase significantly. A decrease of the pH even leads to local unfolding in otherwise stable secondary structure elements, which is a prerequisite for proteolytic cleavage. This effect is even more pronounced in the destabilized mutant, while no unfolding was observed for the stabilized mutant. In summary, we report detailed structural models which rationalize the experimentally observed cleavage pattern during endosomal acidification.


2020 ◽  
Author(s):  
Masaki Okumura ◽  
Shingo Kanemura ◽  
Motonori Matsusaki ◽  
Misaki Kinoshita ◽  
Tomohide Saio ◽  
...  

SUMMARYP5, also known as PDIA6, is a PDI-family member that plays an important role in the ER quality control. Herein, we revealed that P5 dimerizes via a unique adhesive motif contained in the N-terminal thioredoxin-like domain. This motif is apparently similar to, but radically different from conventional leucine-zipper motifs, in that the former includes a periodic repeat of leucine or valine residues at the third or fourth position spanning five helical turns on 15-residue anti-parallel α-helices, unlike the latter of which the leucine residues appear every two helical turns on ∼30-residue parallel α-helices at dimer interfaces. A monomeric P5 mutant with the impaired adhesive motif showed structural instability and local unfolding, and behaved as an aberrant protein that induces the ER stress response. Disassembly of P5 to monomers compromised its ability to inactivate IRE1α via reduction of intermolecular disulfide bonds and its Ca2+-dependent regulation of chaperone function in vitro. Thus, the leucine-valine adhesive motif supports structure and physiological function of P5.


2020 ◽  
Author(s):  
Phattaraporn Morris ◽  
Ribia García-Arrazola ◽  
Leonardo Rios-Solis ◽  
Paul A. Dalby

AbstractTransketolase (TK) has been previously engineered, using semi-rational directed evolution and substrate walking, to accept increasingly aliphatic, cyclic and then aromatic substrates. This has ultimately led to the poor water solubility of new substrates, as a potential bottleneck to further exploitation of this enzyme in biocatalysis. Here we used a range of biophysical studies to characterise the response of both E. coli apo- and holo-TK activity and structure to a range of commonly used polar organic co-solvents: acetonitrile (MeCN), n- butanol (nBuOH), ethyl acetate (EToAc), isopropanol (iPrOH), and tetrahydrofuran (THF). The mechanism of enzyme deactivation was found to be predominantly via solvent-induced local unfolding. Holo-TK is thermodynamically more stable than apo-TK and yet for four of the five co-solvents it retained less activity than apo-TK after exposure to organic solvents, indicating that solvent tolerance was not correlated to global conformational stability. The co-solvent concentrations required for complete enzyme inactivation was inversely proportional to co-solvent log(P), while the unfolding rate was directly proportional, indicating that the solvents interact with and partially unfold the enzyme through hydrophobic contacts. Aggregation was not found to be the driving mechanism of enzyme inactivation, but was in some cases an additional impact of solvent-induced local or global unfolding.TK was found to be tolerant to 15% (v/v) iPrOH, 10% (v/v) MeCN, or 6% (v/v) nBuOH over 3 hours. This work indicates that future attempts to engineer the enzyme to better tolerate co-solvents should focus on increasing the stability of the protein to local unfolding, particularly in and around the cofactor-binding loops.


2020 ◽  
Vol 118 (3) ◽  
pp. 502a
Author(s):  
Anna S. Kamenik ◽  
Florian Hofer ◽  
Klaus R. Liedl

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Santiago E. Faraj ◽  
Martín E. Noguera ◽  
José María Delfino ◽  
Javier Santos
Keyword(s):  

2020 ◽  
Vol 118 (2) ◽  
pp. 396-402
Author(s):  
Tianshu Xiao ◽  
Yimei Lu ◽  
Jing-song Fan ◽  
Daiwen Yang

2019 ◽  
Vol 295 (7) ◽  
pp. 1781-1791 ◽  
Author(s):  
Jakob H. Mikkelsen ◽  
Kasper Runager ◽  
Christian B. F. Andersen

Iron is an essential nutrient for all living organisms. To acquire iron, many pathogens have developed elaborate systems to steal it from their hosts. The iron acquisition system in the opportunistic pathogen Staphylococcus aureus comprises nine proteins, called iron-regulated surface determinants (Isds). The Isd components enable S. aureus to extract heme from hemoglobin (Hb), transport it into the bacterial cytoplasm, and ultimately release iron from the porphyrin ring. IsdB and IsdH act as hemoglobin receptors and are known to actively extract heme from extracellular Hb. To limit microbial pathogenicity during infection, host organisms attempt to restrict the availability of nutrient metals at the host–pathogen interface. The human acute phase protein haptoglobin (Hp) protects the host from oxidative damage by clearing hemoglobin that has leaked from red blood cells and also restricts the availability of extracellular Hb-bound iron to invading pathogens. To investigate whether Hp serves an additional role in nutritional immunity through a direct inhibition of IsdH-mediated iron acquisition, here we measured heme extraction from the Hp–Hb complex by UV-visible spectroscopy and determined the crystal structure of the Hp–Hb–IsdH complex at 2.9 Å resolution. We found that Hp strongly inhibits IsdH-mediated heme extraction and that Hp binding prevents local unfolding of the Hb heme pocket, leaving IsdH unable to wrest the heme from Hb. Furthermore, we noted that the Hp–Hb binding appears to trap IsdH in an initial state before heme transfer. Our findings provide insights into Hp-mediated IsdH inhibition and the dynamics of IsdH-mediated heme extraction.


2019 ◽  
Author(s):  
T Xiao ◽  
Y Lu ◽  
J Fan ◽  
D Yang

AbstractFatty acid binding proteins (FABPs) play an important role in transportation of fatty acids. Despite intensive studies, how fatty acids enter the protein cavity for binding is still controversial. Here, a gap-closed variant of human intestinal FABP was generated by mutagenesis, in which the gap is locked by a disulfide bridge. According to its structure determined here by NMR, this variant has no obvious openings as the ligand entrance and the gap cannot be widened by internal dynamics. Nevertheless, it still uptakes fatty acids and other ligands. NMR relaxation dispersion, chemical exchange saturation transfer and hydrogen-deuterium exchange experiments show that the variant exists in a major native state, two minor native-like state, and two locally unfolded states in aqueous solution. Local unfolding of either βB–βD or helix 2 can generate an opening large enough for ligands to enter the protein cavity, but only the fast local unfolding of helix 2 is relevant to the ligand entry process.Statement of SignificanceFatty acid binding proteins transport fatty acids to specific organelles in the cell. To enable the transport, fatty acids must enter and leave the protein cavity. In spite of many studies, how fatty acids enter the protein cavity remains controversial. Using mutagenesis and biophysical techniques, we have resolved the disagreement and further showed that local unfolding of the second helix can generate a transient opening to allow ligands to enter the protein cavity. Since lipid binding proteins are highly conserved in 3D structures and ligand binding, all of them may use the same local unfolding mechanism for ligand uptake and release.


Sign in / Sign up

Export Citation Format

Share Document