scholarly journals Demonstration and partial characterization of glutathione disulfide-stimulated ATPase activity in the plasma membrane fraction from rat hepatocytes.

1985 ◽  
Vol 260 (4) ◽  
pp. 1999-2002 ◽  
Author(s):  
P Nicotera ◽  
M Moore ◽  
G Bellomo ◽  
F Mirabelli ◽  
S Orrenius
1978 ◽  
Vol 77 (2) ◽  
pp. 448-463 ◽  
Author(s):  
E Costantino-Ceccarini ◽  
PM Novikoff ◽  
PH Atkinson ◽  
AB Novikoff

A plasma membrane fraction of HeLa S3 cells, consisting of ghosts, is characterized more fully. A simple procedure is described which permits light and electron microscope study of the plasma membrane fraction through the entire depth of the final product pellet and through large areas parallel to the surface. Contamination by nuclei is 0.14%, too little for DNA detection by the diphenylamine reaction. Contamination by rough endoplasmic reticulum and ribosomes is small, a single ghost containing about 3% of the RNA in a single cell. Mitochondria were not encountered. Electron microscopy also shows (a) small vesicles associated with the outer surface of the ghosts, and (b) a filamentous web at the inner face of the ghost membrane. Sodium dodecyl sulfate (SDS)-polyacrylamide gel analysis shows that of the many Coomassie Blue-stained bands two were prominent. One, 43,000 daltons, co-migrated with purified rabbit muscle actin and constituted about 7.5% of the plasma membrane protein. The other major band, 34,000 daltons, was concentrated in the plasma membrane fraction. Two major glycoproteins detected by autoradiography of [14C]fucose-labeled glycoproteins on the gels, had apparent molecular weights of 35,000 daltons and 32,000 daltons. These major bands did not stain with Coomassie Blue. There were many other minor glycoprotein bands in the 200,000- to 80,000-dalton range. Ouabain-sensitive, Na+, K+-adenosine triphosphatase (ATPase) activity of the ghost fraction is purified 9.1 (+/- 2.2) times over the homogenate; recover of the activity is 12.0 (+/- 3.8%) of the homogenate. Enrichment and recovery of fucosylglycoprotein parallel those for ouabain-sensitive Na+, K+-ATPase activity. Fucosyl glycoprotein is recovered more than the enzyme activity in a smooth membrane vesicle fraction probably containing the bulk of plasma membrane not recovered as ghosts.


1972 ◽  
Vol 247 (21) ◽  
pp. 6913-6918 ◽  
Author(s):  
Stephen J. Marx ◽  
Susan A. Fedak ◽  
G.D. Aurbach

2000 ◽  
Vol 439 (7) ◽  
pp. R137-R138
Author(s):  
Helena Lenasi ◽  
Maja Šlajpah ◽  
Maksimiljan Sterle ◽  
Tamara Hudnik-Plevnik ◽  
Katja Breskvar

1986 ◽  
Vol 250 (1) ◽  
pp. C65-C75 ◽  
Author(s):  
R. V. Sharma ◽  
R. C. Bhalla

A plasma membrane fraction from bovine carotid arteries has been isolated by extraction of a crude microsomal fraction with a low-ionic-strength buffer containing ATP and Ca2+. This step was followed by sucrose-density-gradient centrifugation in the presence of 0.6 M KCl. The plasma membrane vesicles were enriched 60- to 80-fold in Na+-K+-adenosinetriphosphatase, 5'-nucleotidase, and phosphodiesterase I activities. The final yields of these marker enzymes were 12-18% of the total activities in the postnuclear supernatant, and the protein yield was 100-120 micrograms/g wet wt of carotid arteries. Contamination of the plasma membrane fraction by mitochondria and sarcoplasmic reticulum was low as judged by low activities of succinate--cytochrome-c reductase and NADPH--cytochrome-c reductase, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoprecipitation with smooth muscle-specific actin antibodies showed that the plasma membrane fraction was substantially free from myosin and actin contamination. The plasma membrane vesicles accumulated Ca2+ in the presence of ATP, and the accumulation was increased by calmodulin. Ca2+ accumulated in the presence or absence of calmodulin could be released almost completely from the vesicles by the addition of the Ca2+ ionophore A23187 but not by ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid, indicating that Ca2+ uptake in the presence of ATP is intravesicular. The effects of phosphate and oxalate on Ca2+ uptake in the plasma membranes were different from one another. Phosphate increased Ca2+ uptake in a concentration- and time-dependent manner, and the increase in Ca2+ uptake could be observed as early as 1 min. On the other hand, oxalate at concentrations up to 5 mM did not increase Ca2+ uptake significantly during the 30-min incubation. These plasma membranes can prove useful for the study of ion transport across plasma membranes, hormone binding, characterization of calcium channels, and preparation of antibodies against plasma membrane proteins.


1990 ◽  
Vol 18 (4) ◽  
pp. 646-646
Author(s):  
STEVEN VAYRO ◽  
SORAYA SHIRAZI-BEECHEY ◽  
RICHARD KEMP ◽  
R. BRIAN BEECHEY

Sign in / Sign up

Export Citation Format

Share Document