scholarly journals Ionic Properties of Aqueous Dispersions of Phosphatidic Acid

1964 ◽  
Vol 239 (12) ◽  
pp. 4066-4072 ◽  
Author(s):  
Morris B. Abramson ◽  
Robert Katzman ◽  
Clarence E. Wilson ◽  
Harry P. Gregor
Biochemistry ◽  
1966 ◽  
Vol 5 (7) ◽  
pp. 2207-2213 ◽  
Author(s):  
Morris B. Abramson ◽  
Robert Katzman ◽  
Harry Gregor ◽  
Robert Curci

Author(s):  
Vitthal S. Kulkarni ◽  
Wayne H. Anderson ◽  
Rhoderick E. Brown

The biological significance of the sphingomyelins (SM) and monoglycosylated sphingolipids like galactosylceramides (GalCer) are well documented Our recent investigation showed tubular bilayers in the aqueous dispersions of N-nervonoyl GalCer [N-(24:lΔ15,cls) GalCer] (a major fatty acyl moiety of natural GalCer). To determine the influence of lipid head groups on the resulting mesophasic morphology, we investigated microstructural self-assemblies of N-nervonoyl-SM [N-(24:1 Δ15,cls) SM; the second most abundant sphingomyelin in mammalian cell membranes], 1- palmitoyl-2-nervonoyl phosphatidylcholine [PNPC] (the lipid species with the same acyl chain configuration as in N-(24: 1) GalCer) and also compared it with egg-SM by freeze-fracture EM.Procedures for synthesizing and purifying N-(24:1) GalCer, N-(24:1) SM, and PNPC have been reported . Egg-SM was purchased from Avanti Polar Lipids, Alabaster AL. All lipids were >99% pure as checked by thin layer chromatography. Lipid dispersions were prepared by hydrating dry lipid with phosphate buffer (pH 6.6) at 80-90°C (3-5 min), vigorously vortexing (1 min) and repeating this procedure for three times prior to three freeze-thaw cycles.


1986 ◽  
Vol 56 (03) ◽  
pp. 260-262 ◽  
Author(s):  
Isabella Roos ◽  
Fabrizia Ferracin ◽  
Alfred Pletscher

SummaryArginine-vasopressin (AVP) in the presence of Mg2+ but not in the absence of bivalent cations led to accumulation of [32P]-phosphatidic acid ([32P]-PA) in human blood platelets. Mg2+ also enhanced the specific binding of [3H]-AVP to intact platelets. The concentrations of the cation which enabled AVP to cause half maximal rise of [32P]-PA and those inducing half maximal [3H]-AVP-binding were of the same order. It is concluded that the stimulation of phosphatidyl inositide breakdown by AVP in presence of Mg2+ is at least partially due to a Mg2+-induced enhancement of specific AVP-binding to the platelet membranes.


1983 ◽  
Vol 50 (02) ◽  
pp. 595-600 ◽  
Author(s):  
Y Watanabe ◽  
M Soda ◽  
N Fukamachi ◽  
B Kobayashi

SummaryThrombin-induced platelet release reaction examined with secretion of calcium and N-acetylglucosaminidase was significantly enhanced in the platelets from reserpine-treated rabbits as compared with the control. On the other hand, 32P-incorporation into phosphatidic acid was suppressed in the reserpinized platelets in activated state. Thrombin induced phosphatidylinositol (PI)- breakdown, which was examined by decreases in radioactivity and content of PI, and an increase in diacylglycerol, was not enhanced in the reserpinized platelets as compared with the control. The phosphorylation of the specific protein coupled to thrombin- induced platelet PI-breakdown was not stimulated in the reserpinized platelets as compared with the control. In contrast to PI, PC-degradation by thrombin was significantly stimulated in the reserpinized platelets. Possible existence of pathway(s) other than that associated with an enhancement of Pl-tumover is conceivable as a mechanism involved in platelet release reaction.


2020 ◽  
Author(s):  
Daniel Bůžek ◽  
Slavomír Adamec ◽  
Kamil Lang ◽  
Jan Demel

<div><p>UiO-66 is a zirconium-based metal-organic framework (MOF) that has numerous applications. Our group recently determined that UiO-66 is not as inert in aqueous dispersions as previously reported in the literature. The present work therefore assessed the behaviour of UiO-66 in buffers: 2-amino-2-(hydroxymethyl)-1,3-propanediol (TRIS), 4-(2-hydroxyethyl)piperazine-1-ethane sulfonic acid (HEPES), N-ethylmorpholine (NEM) and phosphate buffer (PB), all of which are commonly used in many UiO-66 applications. High pressure liquid chromatography and inductively coupled plasma mass spectrometry were used to monitor degradation of the MOF. In each buffer, the terephthalate linker was released to some extent, with a more pronounced leaching effect in the saline forms of these buffers. The HEPES buffer was found to be the most benign, whereas NEM and PB should be avoided at any concentration as they were shown to rapidly degrade the UiO-66 framework. Low concentration TRIS buffers are also recommended, although these offer minimal buffer capacity to adjust pH. Regardless of the buffer used, rapid terephthalate release was observed, indicating that the UiO-66 was attacked immediately after mixing with the buffer. In addition, the dissolution of zirconium, observed in some cases, intensified the UiO-66 decomposition process. These results demonstrate that sensitive analytical techniques have to be used to monitor the release of MOF components so as to quantify the stabilities of these materials in liquid environments.</p></div>


Sign in / Sign up

Export Citation Format

Share Document