head groups
Recently Published Documents


TOTAL DOCUMENTS

549
(FIVE YEARS 107)

H-INDEX

50
(FIVE YEARS 6)

2021 ◽  
Vol 9 ◽  
Author(s):  
Camillo La Mesa ◽  
Gianfranco Risuleo

The surface activity of surfactant mixtures is critically analyzed. Cat-anionic systems, in which two ionic species are mixed in non-stoichiometric ratios, are considered. With respect to the solution behavior, where a substantial decrease of cmc is met compared to the pure components, a moderate effect on surface tension, γ, occurs. Compared to the pure species, the decrease of surface tension for such mixtures is not significant, and no clear dependence on the mole fraction anionic/cationic is met. The surface tension is grossly constant in the whole concentration range. Conversely, the interaction parameter for surfaces, βsurf (calculated by the regular solution theory), is more negative than that for micelle formation, βmic. This fact suggests that the desolvation of polar heads of the two species at interfaces is largely different. Very presumably, the underlying rationale finds origin in the sizes and solvation of both polar head groups.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7507
Author(s):  
Montassar Khalil ◽  
Alexis Hocquigny ◽  
Mathieu Berchel ◽  
Tristan Montier ◽  
Paul-Alain Jaffrès

A convergent synthesis of cationic amphiphilic compounds is reported here with the use of the phosphonodithioester–amine coupling (PAC) reaction. This versatile reaction occurs at room temperature without any catalyst, allowing binding of the lipid moiety to a polar head group. This strategy is illustrated with the use of two lipid units featuring either two oleyl chains or two-branched saturated lipid chains. The final cationic amphiphiles were evaluated as carriers for plasmid DNA delivery in four cell lines (A549, Calu3, CFBE and 16HBE) and were compared to standards (BSV36 and KLN47). These new amphiphilic derivatives, which were formulated with DOPE or DOPE-cholesterol as helper lipids, feature high transfection efficacies when associated with DOPE. The highest transfection efficacies were observed in the four cell lines at low charge ratios (CR = 0.7, 1 or 2). At these CRs, no toxic effects were detected. Altogether, this new synthesis scheme using the PAC reaction opens up new possibilities for investigating the effects of lipid or polar head groups on transfection efficacies.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3464
Author(s):  
Laura Menchetti ◽  
Leonardo Nanni Costa ◽  
Martina Zappaterra ◽  
Barbara Padalino

Current European animal transportation law contains only a few and vague indications concerning how to move lambs of less than 26 kg. Moreover, little information is available in the literature about factors affecting these lambs’ welfare. We investigated the effect of space allowance and ambient temperature on the welfare of unweaned Lacaune lambs during a simulation of long-distance transportation (19 h). Three groups of lambs (N = 130) were housed in equally sized pens for 19 h, Control (C; n = 39; 0.27 m2 per head), Low Space Allowance (LSA; n = 52; 0.20 m2 per head), and Heat Stress (HS; n = 39; 0.27 m2 per head) groups. LSA lambs had lower space allowance than C but were tested at the same temperature, within their Thermoneutral zone (range = 12–18 °C). The HS lambs were, instead, subjected to higher temperatures (range = 19–30 °C). Scan sampling of behavior was conducted, eye temperature and body weight were also recorded. LSA and HS lambs showed more discomfort behaviors (p < 0.05) and higher eye temperatures (p < 0.001) compared to C lambs, while HS lambs additionally showed a decrease in body weight over the experimental period (p < 0.001). This study indicates that lower space allowances and higher temperatures impact negatively the welfare of lambs transported for slaughter suggesting that the regulation should be implemented taking these factors into account.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Mónica Muñoz-Úbeda ◽  
Martina Semenzato ◽  
Anais Franco-Romero ◽  
Elena Junquera ◽  
Emilio Aicart ◽  
...  

Abstract Background Lipoplexes are non-viral vectors based on cationic lipids used to deliver DNA into cells, also known as lipofection. The positively charge of the hydrophilic head-group provides the cationic lipids the ability to condensate the negatively charged DNA into structured complexes. The polar head can carry a large variety of chemical groups including amines as well as guanidino or imidazole groups. In particular, gemini cationic lipids consist of two positive polar heads linked by a spacer with different length. As for the hydrophobic aliphatic chains, they can be unsaturated or saturated and are connected to the polar head-groups. Many other chemical components can be included in the formulation of lipoplexes to improve their transfection efficiency, which often relies on their structural features. Varying these components can drastically change the arrangement of DNA molecules within the lamellar, hexagonal or cubic phases that are provided by the lipid matrix. Lipofection is widely used to deliver genetic material in cell culture experiments but the simpler formulations exhibit major drawbacks related to low transfection, low specificity, low circulation half-life and toxicity when scaled up to in vivo experiments. Results So far, we have explored in cell cultures the transfection ability of lipoplexes based on gemini cationic lipids that consist of two C16 alkyl chains and two imidazolium polar head-groups linked with a polyoxyethylene spacer, (C16Im)2(C4O). Here, PEGylated lipids have been introduced to the lipoplex formulation and the transgene expression of the Opa1 mitochondrial transmembrane protein in mice was assessed. The addition of PEG on the surface of the lipid mixed resulted in the formation of Ia3d bicontinuous cubic phases as determined by small angle X-ray scattering. After a single intramuscular administration, the cubic lipoplexes were accumulated in tissues with tight endothelial barriers such as brain, heart, and lungs for at least 48 h. The transgene expression of Opa1 in those organs was identified by western blotting or RNA expression analysis through quantitative polymerase chain reaction. Conclusions The expression reported here is sufficient in magnitude, duration and toxicity to consolidate the bicontinuous cubic structures formed by (C16Im)2(C4O)-based lipoplexes as valuable therapeutic agents in the field of gene delivery. Graphical Abstract


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chetan S. Poojari ◽  
Katharina C. Scherer ◽  
Jochen S. Hub

AbstractMany biological membranes are asymmetric and exhibit complex lipid composition, comprising hundreds of distinct chemical species. Identifying the biological function and advantage of this complexity is a central goal of membrane biology. Here, we study how membrane complexity controls the energetics of the first steps of membrane fusions, that is, the formation of a stalk. We first present a computationally efficient method for simulating thermodynamically reversible pathways of stalk formation at coarse-grained resolution. The method reveals that the inner leaflet of a typical plasma membrane is far more fusogenic than the outer leaflet, which is likely an adaptation to evolutionary pressure. To rationalize these findings by the distinct lipid compositions, we computed ~200 free energies of stalk formation in membranes with different lipid head groups, tail lengths, tail unsaturations, and sterol content. In summary, the simulations reveal a drastic influence of the lipid composition on stalk formation and a comprehensive fusogenicity map of many biologically relevant lipid classes.


2021 ◽  
Vol 22 (19) ◽  
pp. 10708
Author(s):  
Laxmi Shanthi Chede ◽  
Brett A. Wagner ◽  
Garry R. Buettner ◽  
Maureen D. Donovan

The ability of sodium caprylate and l-menthol to fluidize phospholipid bilayers composed of lipids simulating the buccal epithelium was investigated using electron spin resonance (ESR) to evaluate the action of these agents as permeation enhancers. 5-Doxyl stearic acid (5-DSA) and 16-doxyl stearic acid (16-DSA) were used as spin labels to identify alterations in membrane fluidity near the polar head groups or inner acyl regions of the lipid bilayer, respectively. The molecular motion of both 5-DSA and 16-DSA showed increased disorder near the polar and inner hydrophobic regions of the bilayer in the presence of sodium caprylate suggesting fluidization in both the regions, which contributes to its permeation enhancing effects. L-menthol decreased the order parameter for 16-DSA, showing membrane fluidization only in the inner acyl regions of the bilayer, which also corresponded to its weaker permeation enhancing effects. The rapid evaluation of changes in fluidity of the bilayer in the presence of potential permeation enhancers using ESR enables improved selection of effective permeation enhancers and enhancer combinations based on their effect on membrane fluidization.


Sign in / Sign up

Export Citation Format

Share Document