acyl chain
Recently Published Documents


TOTAL DOCUMENTS

1198
(FIVE YEARS 263)

H-INDEX

77
(FIVE YEARS 9)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Shan Wang ◽  
William D. G. Brittain ◽  
Qian Zhang ◽  
Zhou Lu ◽  
Ming Him Tong ◽  
...  

AbstractNon-Ribosomal Peptide Synthetases (NRPSs) assemble a diverse range of natural products with important applications in both medicine and agriculture. They consist of several multienzyme subunits that must interact with each other in a highly controlled manner to facilitate efficient chain transfer, thus ensuring biosynthetic fidelity. Several mechanisms for chain transfer are known for NRPSs, promoting structural diversity. Herein, we report the first biochemically characterized example of a type II thioesterase (TEII) domain capable of catalysing aminoacyl chain transfer between thiolation (T) domains on two separate NRPS subunits responsible for installation of a dehydrobutyrine moiety. Biochemical dissection of this process reveals the central role of the TEII-catalysed chain translocation event and expands the enzymatic scope of TEII domains beyond canonical (amino)acyl chain hydrolysis. The apparent co-evolution of the TEII domain with the NRPS subunits highlights a unique feature of this enzymatic cassette, which will undoubtedly find utility in biosynthetic engineering efforts.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Shin Morioka ◽  
Hiroki Nakanishi ◽  
Toshiyoshi Yamamoto ◽  
Junya Hasegawa ◽  
Emi Tokuda ◽  
...  

AbstractPhosphoinositides are a family of membrane lipids essential for many biological and pathological processes. Due to the existence of multiple phosphoinositide regioisomers and their low intracellular concentrations, profiling these lipids and linking a specific acyl variant to a change in biological state have been difficult. To enable the comprehensive analysis of phosphoinositide phosphorylation status and acyl chain identity, we develop PRMC-MS (Phosphoinositide Regioisomer Measurement by Chiral column chromatography and Mass Spectrometry). Using this method, we reveal a severe skewing in acyl chains in phosphoinositides in Pten-deficient prostate cancer tissues, extracellular mobilization of phosphoinositides upon expression of oncogenic PIK3CA, and a unique profile for exosomal phosphoinositides. Thus, our approach allows characterizing the dynamics of phosphoinositide acyl variants in intracellular and extracellular milieus.


2022 ◽  
Vol 119 (2) ◽  
pp. e2102953118
Author(s):  
Varnavas D. Mouchlis ◽  
Daiki Hayashi ◽  
Alexis M. Vasquez ◽  
Jian Cao ◽  
J. Andrew McCammon ◽  
...  

Lipoprotein-associated phospholipase A2 (Lp-PLA2) associates with low- and high-density lipoproteins in human plasma and specifically hydrolyzes circulating oxidized phospholipids involved in oxidative stress. The association of this enzyme with the lipoprotein’s phospholipid monolayer to access its substrate is the most crucial first step in its catalytic cycle. The current study demonstrates unequivocally that a significant movement of a major helical peptide region occurs upon membrane binding, resulting in a large conformational change upon Lp-PLA2 binding to a phospholipid surface. This allosteric regulation of an enzyme’s activity by a large membrane-like interface inducing a conformational change in the catalytic site defines a unique dimension of allosterism. The mechanism by which this enzyme associates with phospholipid interfaces to select and extract a single phospholipid substrate molecule and carry out catalysis is key to understanding its physiological functioning. A lipidomics platform was employed to determine the precise substrate specificity of human recombinant Lp-PLA2 and mutants. This study uniquely elucidates the association mechanism of this enzyme with membranes and its resulting conformational change as well as the extraction and binding of specific oxidized and short acyl-chain phospholipid substrates. Deuterium exchange mass spectrometry coupled with molecular dynamics simulations was used to define the precise specificity of the subsite for the oxidized fatty acid at the sn-2 position of the phospholipid backbone. Despite the existence of several crystal structures of this enzyme cocrystallized with inhibitors, little was understood about Lp-PLA2‘s specificity toward oxidized phospholipids.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 119
Author(s):  
Jolanta Żelasko ◽  
Aleksander Czogalla

The need to gain insights into the molecular details of peripheral membrane proteins’ specificity towards phosphatidic acid (PA) is undeniable. The variety of PA species classified in terms of acyl chain length and saturation translates into a complicated, enigmatic network of functional effects that exert a critical influence on cell physiology. As a consequence, numerous studies on the importance of phosphatidic acid in human diseases have been conducted in recent years. One of the key proteins in this context is mTOR, considered to be the most important cellular sensor of essential nutrients while regulating cell proliferation, and which also appears to require PA to build stable and active complexes. Here, we investigated the specific recognition of three physiologically important PA species by the mTOR FRB domain in the presence or absence of cholesterol in targeted membranes. Using a broad range of methods based on model lipid membrane systems, we elucidated how the length and saturation of PA acyl chains influence specific binding of the mTOR FRB domain to the membrane. We also discovered that cholesterol exerts a strong modulatory effect on PA-FRB recognition. Our data provide insight into the molecular details of some physiological effects reported previously and reveal novel mechanisms of fine-tuning the signaling cascades dependent on PA.


2021 ◽  
Author(s):  
Jasmine Alexander-Floyd ◽  
Antonia R. Bass ◽  
Erin M. Harberts ◽  
Daniel Grubaugh ◽  
Joseph D. Buxbaum ◽  
...  

Detection of Gram-negative bacterial lipid A by the extracellular sensor, MD-2/TLR4 or the intracellular inflammasome sensors, CASP4 and CASP5, induces robust inflammatory responses. The chemical structure of lipid A, specifically the phosphorylation and acylation state, varies across and within bacterial species, potentially allowing pathogens to evade or suppress host immunity. Currently, it is not clear how distinct alterations in the phosphorylation or acylation state of lipid A affect both human TLR4 and CASP4/5 activation. Using a panel of engineered lipooligosaccharides (LOS) derived from Yersinia pestis with defined lipid A structures that vary in their acylation or phosphorylation state, we identified that differences in phosphorylation state did not affect TLR4 or CASP4/5 activation. However, the acylation state differentially impacted TLR4 and CASP4/5 activation. Specifically, all of the examined tetra-, penta-, and hexa-acylated LOS variants activated CASP4/5-dependent responses, whereas TLR4 responded to penta- and hexa-acylated LOS but did not respond to tetra-acylated LOS or penta-acylated LOS lacking the secondary acyl chain at the 3' position. As expected, lipid A alone was sufficient for TLR4 activation; however, human macrophages required both lipid A and the core oligosaccharide to mount a robust CASP4/5 inflammasome response. Our findings show that human TLR4 and CASP4/5 detect both shared and non-overlapping LOS/lipid A structures, which enables the innate immune system to recognize a wider range of bacterial LOS/lipid A, thereby constraining the ability of pathogens to evade innate immune detection.


2021 ◽  
Author(s):  
Kenna Stenback ◽  
Kayla Flyckt ◽  
Trang Hoang ◽  
Alexis Campbell ◽  
Basil Nikolau

Abstract Eukaryotes express a multi-component fatty acid elongase to produce very long chain fatty acids (VLCFAs), which are building blocks of diverse lipids. Elongation is achieved by cyclical iteration of four reactions, the first of which generates a new carbon-carbon bond, elongating the acyl-chain. This reaction is catalyzed by either ELONGATION DEFECTIVE LIKE (ELO) or 3-ketoacyl-CoA synthase (KCS) enzymes. Whereas plants express both ELO and KCS enzymes, other eukaryotes express only ELOs. We explored the KCS and ELO enzymatic redundancies by expressing the former in yeast strains that lacked endogenous ELO isozymes. Expression of the 26 maize KCS isozymes in wild-type, scelo2 or scelo3 single mutants did not affect VLCFA profiles. However, five of these KCSs were capable of complementing the lethal scelo2; scelo3 double mutant. These rescued strains express novel VLCFA profiles reflecting the different catalytic capabilities of the KCS isozymes. These novel strains offer a platform to explore the relationship between VLCFA profiles and cellular physiology.


2021 ◽  
Vol 22 (24) ◽  
pp. 13272
Author(s):  
Mária Péter ◽  
Péter Gudmann ◽  
Zoltán Kóta ◽  
Zsolt Török ◽  
László Vígh ◽  
...  

Homeostatic maintenance of the physicochemical properties of cellular membranes is essential for life. In yeast, trehalose accumulation and lipid remodeling enable rapid adaptation to perturbations, but their crosstalk was not investigated. Here we report about the first in-depth, mass spectrometry-based lipidomic analysis on heat-stressed Schizosaccharomyces pombe mutants which are unable to synthesize (tps1Δ) or degrade (ntp1Δ) trehalose. Our experiments provide data about the role of trehalose as a membrane protectant in heat stress. We show that under conditions of trehalose deficiency, heat stress induced a comprehensive, distinctively high-degree lipidome reshaping in which structural, signaling and storage lipids acted in concert. In the absence of trehalose, membrane lipid remodeling was more pronounced and increased with increasing stress dose. It could be characterized by decreasing unsaturation and increasing acyl chain length, and required de novo synthesis of stearic acid (18:0) and very long-chain fatty acids to serve membrane rigidification. In addition, we detected enhanced and sustained signaling lipid generation to ensure transient cell cycle arrest as well as more intense triglyceride synthesis to accommodate membrane lipid-derived oleic acid (18:1) and newly synthesized but unused fatty acids. We also demonstrate that these changes were able to partially substitute for the missing role of trehalose and conferred measurable stress tolerance to fission yeast cells.


2021 ◽  
Author(s):  
Shuo Qian ◽  
Piotr Zolnierczuk

Aurein 1.2 is a short but potent α-helical membrane-active antimicrobial peptide that has shown inhibition on a broad spectrum of bacteria and anti-cancer cell activity. With well-defined helicity, amphipathicity, and cationic charges, it readily binds to membranes and causes membrane change and disruption. This study provides details on how Aurein 1.2 interacts with charged lipid membranes by using neutron membrane diffraction (NMD) and neutron spin echo (NSE) spectroscopy on complex peptide-membrane systems. NMD provides higher resolution lipid bilayer structures than solution scattering. NMD revealed the peptide is mostly associated in the lipid headgroup region. Even at moderately high concentrations (e.g., peptide:lipid ratio of 1:30), aurein is located at the acyl chain-headgroup region without deep penetration into the hydrophobic acyl chain. However, it does reduce the elasticity of the membrane at that concentration, which was corroborated by the NSE results. Furthermore, NSE shows that aurein first softens the membrane, like other α-helical peptides at low concentration, but then makes the membrane much more rigid, even without membrane pore formation. The evidence shows that the action of aurein is quite strong for modifying charged lipid distribution without the need to form membrane pores or disintegrate membranes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Whitaker Cohn ◽  
Mikhail Melnik ◽  
Calvin Huang ◽  
Bruce Teter ◽  
Sujyoti Chandra ◽  
...  

Alzheimer’s disease (AD) is the most common cause of dementia, yet there is no cure or diagnostics available prior to the onset of clinical symptoms. Extracellular vesicles (EVs) are lipid bilayer-delimited particles that are released from almost all types of cell. Genome-wide association studies have linked multiple AD genetic risk factors to microglia-specific pathways. It is plausible that microglia-derived EVs may play a role in the progression of AD by contributing to the dissemination of insoluble pathogenic proteins, such as tau and Aβ. Despite the potential utility of EVs as a diagnostic tool, our knowledge of human brain EV subpopulations is limited. Here we present a method for isolating microglial CD11b-positive small EVs from cryopreserved human brain tissue, as well as an integrated multiomics analysis of microglial EVs enriched from the parietal cortex of four late-stage AD (Braak V-VI) and three age-matched normal/low pathology (NL) cases. This integrated analysis revealed 1,000 proteins, 594 lipids, and 105 miRNAs using shotgun proteomics, targeted lipidomics, and NanoString nCounter technology, respectively. The results showed a significant reduction in the abundance of homeostatic microglia markers P2RY12 and TMEM119, and increased levels of disease-associated microglia markers FTH1 and TREM2, in CD11b-positive EVs from AD brain compared to NL cases. Tau abundance was significantly higher in AD brain-derived microglial EVs. These changes were accompanied by the upregulation of synaptic and neuron-specific proteins in the AD group. Levels of free cholesterol were elevated in microglial EVs from the AD brain. Lipidomic analysis also revealed a proinflammatory lipid profile, endolysosomal dysfunction, and a significant AD-associated decrease in levels of docosahexaenoic acid (DHA)-containing polyunsaturated lipids, suggesting a potential defect in acyl-chain remodeling. Additionally, four miRNAs associated with immune and cellular senescence signaling pathways were significantly upregulated in the AD group. Our data suggest that loss of the homeostatic microglia signature in late AD stages may be accompanied by endolysosomal impairment and the release of undigested neuronal and myelin debris, including tau, through extracellular vesicles. We suggest that the analysis of microglia-derived EVs has merit for identifying novel EV-associated biomarkers and providing a framework for future larger-scale multiomics studies on patient-derived cell-type-specific EVs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrej Kamenac ◽  
Tobias Obser ◽  
Achim Wixforth ◽  
Matthias F. Schneider ◽  
Christoph Westerhausen

AbstractMembrane-associated enzymes have been found to behave differently qualitatively and quantitatively in terms of activity. These findings were highly debated in the 1970s and many general correlations and reaction specific models have been proposed, reviewed, and discarded. However, new biological applications brought up the need for clarification and elucidation. To address literature shortcomings, we chose the intrinsically water-soluble enzyme a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) and large unilamellar vesicles with a relative broad phase transition. We here present activity measurements of ADAMTS13 in the freely dissolved state and the membrane associated state for phosphocholine lipids with different acyl-chain lengths (13:0, 14:0 and 15:0) and thus main phase transition temperatures. While the freely dissolved enzyme shows a simple Arrhenius behavior, the activity of membrane associated ADAMTS13 in addition shows a peak. This peak temperature correlates with the main phase transition temperature of the used lipids. These findings support an alternative theory of catalysis. This theory predicts a correlation of the membrane associated activity and the heat capacity, as both are susceptibilities of the same surface Gibb’s free energy, since the enzyme is attached to the membrane.


Sign in / Sign up

Export Citation Format

Share Document