abscisic acid
Recently Published Documents


TOTAL DOCUMENTS

7085
(FIVE YEARS 950)

H-INDEX

197
(FIVE YEARS 16)

2022 ◽  
Vol 295 ◽  
pp. 110816
Author(s):  
Changxia Li ◽  
Xuemei Hou ◽  
Kaiping Mou ◽  
Huwei Liu ◽  
Zongxi Zhao ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Yushuai Wang ◽  
Aimei Dai ◽  
Tian Tang

Transposable elements (TEs) are an important source of genetic diversity and can be co-opted for the regulation of host genes. However, to what extent the pervasive TE colonization of plant genomes has contributed to stress adaptation remains controversial. Plants inhabiting harsh environments in nature provide a unique opportunity to answer this question. We compared TE compositions and their evolutionary dynamics in the genomes of two mangrove species: the pioneer Sonneratia alba and its less salt-tolerant relative S. caseolaris. Age distribution, strength of purifying selection and the removal rate of LTR (long terminal repeat) retrotransposons were estimated. Phylogenetic analysis of LTR retrotransposons and their distribution in the genome of S. alba were surveyed. Small RNA sequencing and whole-genome bisulfite sequencing was conducted using leaves of S. alba. Expression pattern of LTR retrotransposons and their nearby genes were examined using RNA-seq data of S. alba under different salt treatments. S. alba possesses more TEs than S. caseolaris. Particularly, many more young Gypsy LTR retrotransposons have accumulated in S. alba than in S. caseolaris despite an increase in purifying selection against TE insertions. The top two most abundant Gypsy families in S. alba preferentially insert in gene-poor regions. They are under relaxed epigenetic repression, probably due to the presence of CHROMO domains in their 3′-ends. Although a considerable number of TEs in S. alba showed differential expression under salt stress, only four copies were significantly correlated with their nearby genes in expression levels. One such TE-gene pair involves Abscisic acid 8'-hydroxylase 3 functioning in abscisic acid catabolism. This study sheds light on the evolutionary dynamics and potential function of TEs in an extremophile. Our results suggest that the conclusion on co-option of TEs should be cautious even though activation of TEs by stress might be prevalent.


Author(s):  
Jun Takeuchi ◽  
Saya Mimura ◽  
Toshiyuki Ohnishi ◽  
Yasushi Todoroki
Keyword(s):  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Fabio Simeoni ◽  
Aleksandra Skirycz ◽  
Laura Simoni ◽  
Giulia Castorina ◽  
Leonardo Perez de Souza ◽  
...  

AbstractStomata are epidermal pores formed by pairs of specialized guard cells, which regulate gas exchanges between the plant and the atmosphere. Modulation of transcription has emerged as an important level of regulation of stomatal activity. The AtMYB60 transcription factor was previously identified as a positive regulator of stomatal opening, although the details of its function remain unknown. Here, we propose a role for AtMYB60 as a negative modulator of oxylipins synthesis in stomata. The atmyb60-1 mutant shows reduced stomatal opening and accumulates increased levels of 12-oxo-phytodienoic acid (12-OPDA), jasmonic acid (JA) and jasmonoyl-l-isoleucine (JA-Ile) in guard cells. We provide evidence that 12-OPDA triggers stomatal closure independently of JA and cooperatively with abscisic acid (ABA) in atmyb60-1. Our study highlights the relevance of oxylipins metabolism in stomatal regulation and indicates AtMYB60 as transcriptional integrator of ABA and oxylipins responses in guard cells.


2022 ◽  
Vol 23 (2) ◽  
pp. 756
Author(s):  
Chengjie Xu ◽  
Mingzhao Luo ◽  
Xianjun Sun ◽  
Jiji Yan ◽  
Huawei Shi ◽  
...  

Salt stress is a major threat to crop quality and yield. Most experiments on salt stress-related genes have been conducted at the laboratory or greenhouse scale. Consequently, there is a lack of research demonstrating the merit of exploring these genes in field crops. Here, we found that the R2R3-MYB transcription factor SiMYB19 from foxtail millet is expressed mainly in the roots and is induced by various abiotic stressors such as salt, drought, low nitrogen, and abscisic acid. SiMYB19 is tentatively localized to the nucleus and activates transcription. It enhances salt tolerance in transgenic rice at the germination and seedling stages. SiMYB19 overexpression increased shoot height, grain yield, and salt tolerance in field- and salt pond-grown transgenic rice. SiMYB19 overexpression promotes abscisic acid (ABA) accumulation in transgenic rice and upregulates the ABA synthesis gene OsNCED3 and the ABA signal transduction pathway-related genes OsPK1 and OsABF2. Thus, SiMYB19 improves salt tolerance in transgenic rice by regulating ABA synthesis and signal transduction. Using rice heterologous expression analysis, the present study introduced a novel candidate gene for improving salt tolerance and increasing yield in crops grown in saline-alkali soil.


2022 ◽  
Vol 14 (2) ◽  
pp. 723
Author(s):  
Abdel Wahab M. Mahmoud ◽  
Mahmoud M. Samy ◽  
Hoda Sany ◽  
Rasha R. Eid ◽  
Hassan M. Rashad ◽  
...  

Salinity is one of the main environmental stresses, and it affects potato growth and productivity in arid and semiarid regions by disturbing physiological process, such as the photosynthesis rate, the absorption of essential nutrients and water, plant hormonal functions, and vital metabolic pathways. Few studies are available on the application of combined nanomaterials to mitigate salinity stress on potato plants (Solanum tuberosum L. cv. Diamont). In order to assess the effects of the sole or combined application of silicon (Si) and potassium (K) nanoparticles and biochar (Bc) on the agro-physiological properties and biochemical constituents of potato plants grown in saline soil, two open-field experiments were executed on a randomized complete block design (RCBD), with five replicates. The results show that the biochar application and nanoelements (n-K and n-Si) significantly improved the plant heights, the fresh and dry plant biomasses, the numbers of stems/plant, the leaf relative water content, the leaf chlorophyll content, the photosynthetic rate (Pn), the leaf stomatal conductance (Gc), and the tuber yields, compared to the untreated potato plants (CT). Moreover, the nanoelements and biochar improved the content of the endogenous elements of the plant tissues (N, P, K, Mg, Fe, Mn, and B), the leaf proline, and the leaf gibberellic acid (GA3), in addition to reducing the leaf abscisic acid content (ABA), the activity of catalase (CAT), and the peroxidase (POD) and polyphenol oxidase (PPO) in the leaves of salt-stressed potato plants. The combined treatment achieved maximum plant growth parameters, physiological parameters, and nutrient concentrations, and minimum transpiration rates (Tr), leaf abscisic acid content (ABA), and activities of the leaf antioxidant enzymes (CAT, POD, and PPO). Furthermore, the combined treatment also showed the highest tuber yield and tuber quality, including the contents of carbohydrates, proteins, and the endogenous nutrients of the tuber tissues (N, P, and K), and the lowest starch content. Moreover, Pearson’s correlation showed that the plant growth and the tuber yields of potato plants significantly and positively correlated with the photosynthesis rate, the internal CO2 concentration, the relative water content, the proline, the chlorophyll content, and the GA3, and that they were negatively correlated with the leaf Na content, PPO, CAT, ABA, MDA, and Tr. It might be concluded that nanoelement (n-K and n-Si) and biochar applications are a promising method to enhance the plant growth and crop productivity of potato plants grown under salinity conditions.


2022 ◽  
Vol 43 (1) ◽  
pp. 263-282
Author(s):  
Luana Tainá Machado Ribeiro ◽  
◽  
Maíra Tiaki Higuchi ◽  
Aline Cristina de Aguiar ◽  
Gabriel Danilo Shimizu ◽  
...  

The color of the berries is an important aspect of the quality of table grapes and crucial for marketing. The ‘Rubi’ table grapes grown in the subtropical climate generally lack color intensity due to the inhibition of anthocyanins by high temperatures during ripening. The exogenous application of abscisic acid (S-ABA) can be used to overcome this problem as the accumulation of anthocyanins in the berry skin is regulated by this plant growth regulator. The objective of this study was to assess the effect of the exogenous application of S-ABA at different stages of ripening on color development in ‘Rubi’ table grapes using the soluble solids (SS) content as a marker of ripening. The study was conducted during two seasons in commercial vineyards. The first trial was conducted in Marialva, Parana, Brazil, during the 2019 summer season crop (harvest in December). S-ABA (400 mg L-1) was exogenously applied at different stages of ripening of ‘Rubi’ table grapes (determined by the SS content of the berries): control (without application); SS = 8-9 ºBrix; SS = 10-11 ºBrix; SS = 8-9 ºBrix (two applications; the second one applied 10 days after the first); and SS = 10-11 ºBrix (two applications; the second one applied 10 days after the first). The second trial was conducted in Cambira, Parana, Brazil, during the 2020 off-season crop (harvest in May). S-ABA (400 mg L-1) was exogenously applied at different stages of ripening of ‘Rubi’ grapes: control (without application); SS = 6-7 ºBrix; SS = 7-8 ºBrix; SS = 9-10 ºBrix; SS = 6-7 ºBrix (two applications; the second one applied 14 days after the first); SS = 7-8 ºBrix (two applications; the second one applied 14 days after the first); and SS = 9-10 ºBrix (two applications; the second one applied 14 days after the first). A randomized block design was used as the statistical model with four replications, and each plot consisted of one vine. The variables analyzed were total anthocyanin contents, color index (CIRG), and color attributes (L*, C*, h°, and ΔE) of berry skin. The total anthocyanin accumulation and color attributes of the berries were evaluated every 10 and 7 days after the first application of S-ABA until harvest in the first and second trials, respectively, and the other variables were evaluated at harvest. In the summer-season crop, when the SS content was 8-11 ºBrix, the application of S-ABA increased the concentration of the total anthocyanins 4 times compared to that in the control, improving berry color development. Furthermore, in the off-season crop, when the SS content was 6-10 ºBrix, the application of S-ABA increased the concentration of total anthocyanins 2-3 times compared to that in the control, improving the color attributes of berries. In both crops, a single application of the plant growth regulator was sufficient to intensify the color of the berries.


Sign in / Sign up

Export Citation Format

Share Document