scholarly journals Amino Acid Regulation of the Rates of Synthesis and Chain Elongation of Ribonucleic Acid in Escherichia coli

1969 ◽  
Vol 244 (12) ◽  
pp. 3387-3392
Author(s):  
R M Winslow ◽  
R A Lazzarini
1974 ◽  
Vol 144 (3) ◽  
pp. 605-606
Author(s):  
John E. M. Midgley ◽  
R. John Smith

Measurements of the concentration of mRNA in rel+and rel-strains of Escherichia coli shortly after the imposition of amino acid deprivation indicate that there is a temporary fall in the amount of this fraction relative to the total cellular RNA.


1970 ◽  
Vol 120 (1) ◽  
pp. 125-132 ◽  
Author(s):  
N. F. Varney ◽  
Gillian A. Thomas ◽  
K. Burton

1. Experiments with rifampicin and stringent strains of Escherichia coli (pro−purB−rel+) indicate that purine deficiency does not decrease and may considerably increase the potential for RNA synthesis by RNA polymerase molecules that are bound to DNA and have already commenced transcription. 2. DNA–RNA hybridization experiments indicate that purine starvation increases the distribution of bound RNA polymerase molecules between the cistrons for mRNA and those for stable RNA. 3. Synthesis of β-galactosidase mRNA is more dependent on the ability to synthesize guanine nucleotides than on the ability to synthesize adenine nucleotides. 4. Amino acid starvation tends to decrease the potential for RNA synthesis by RNA polymerase molecules bound to DNA. 5. Since this effect differs from that due to purine starvation, amino acid control of RNA synthesis does not appear to operate solely by causing a deficiency of purine nucleotides. 6. The results are discussed in terms of the ability to initiate RNA chains and to extend them under different circumstances.


1971 ◽  
Vol 122 (2) ◽  
pp. 149-159 ◽  
Author(s):  
J. E. M. Midgley ◽  
W. J. H. Gray

The rate of polymerization of ribosomal ribonucleic acid chains was estimated for steadily growing cultures of Escherichia coli M.R.E.600, from the kinetics of incorporation of exogenous [5-3H]uracil into completed 23S rRNA molecules. The analytical method of Avery & Midgley (1971) was used. Measurements were made at 37°C, in the presence or the absence of chloramphenicol, in each of three media; enriched broth, glucose–salts or sodium lactate–salts. The rate of chain elongation of 23S rRNA was virtually constant in all media at 37°C, as 24±4 nucleotides added/s. Accelerations in the rate of biosynthesis of rRNA by chloramphenicol in growth-limiting media are due primarily to an increase in the rate of initiation of new RNA chains, up to the rates existing in cultures growing rapidly in broth. Thus, in poorer media, only a small fraction of the available DNA-dependent RNA polymerase molecules are active at any given instant, since the chain-initiation rate is limiting in these conditions. In cultures growing rapidly in enriched broth, antibiotic inhibition caused a rise of some 12% in the rate of incorporation of exogenous uracil into total RNA. This small acceleration was due entirely to the partial stabilization of the mRNA fraction, which accumulated as 14′ of the RNA formed after the addition of chloramphenicol. In cultures growing more slowly in glucose–salts or lactate–salts media, chloramphenicol caused an immediate acceleration of two- to three-fold in the overall rate of RNA synthesis. Studies by DNA–RNA hybridization showed that the synthesis of mRNA was accelerated in harmony with the other affected species. However, just over half the mRNA formed after the addition of chloramphenicol quickly decayed to acid-soluble products, whereas the remainder was more stable and accumulated in the cells. The mRNA fraction constituted about 6% of the total cellular RNA after 3h inhibition. A model was suggested to explain the partial stabilization and accumulation of the mRNA fraction and the acceleration in the rate of synthesis of mRNA when chloramphenicol was added to cultures in growth-limiting media.


Sign in / Sign up

Export Citation Format

Share Document