scholarly journals Amino Acid Sequence of Chymotryptic Peptides from Horse Heart Cytochrome c

1962 ◽  
Vol 237 (7) ◽  
pp. 2161-2174 ◽  
Author(s):  
E. Margoliash

Nature ◽  
1961 ◽  
Vol 192 (4808) ◽  
pp. 1121-1123 ◽  
Author(s):  
E. MARGOLIASH ◽  
EMIL L. SMITH




Nature ◽  
1961 ◽  
Vol 192 (4808) ◽  
pp. 1125-1127 ◽  
Author(s):  
E. MARGOLIASH ◽  
EMIL L. SMITH ◽  
GUNTHER KREIL ◽  
HANS TUPPY


1988 ◽  
Vol 249 (1) ◽  
pp. 83-88 ◽  
Author(s):  
K Rose ◽  
C Herrero ◽  
A E I Proudfoot ◽  
R E Offord ◽  
C J A Wallace

A method is described for the preparation of polypeptides activated uniquely at the C-terminus. The polypeptide is incubated in a concentrated solution of an amino acid active ester, the latter having its amino group free but adequately protected by protonation. The amino acid ester is coupled via its amino group to the C-terminus of the polypeptide by enzymic catalysis (reverse proteolysis). The resulting polypeptide C-terminal active ester is then isolated and coupled to a suitable amino component (generally a polypeptide) in a subsequent chemical coupling. The method appears to be generally applicable; fragments of horse heart cytochrome c, and porcine insulin, are used as examples. Two new analogues of cytochrome c have been prepared by using this method, with yields of up to 60% in the final coupling. Scope and limitations of the method are discussed.





1977 ◽  
Vol 165 (1) ◽  
pp. 11-18 ◽  
Author(s):  
S Nochumson ◽  
E Durban ◽  
S Kim ◽  
W K Paik

A protein methylase III responsible for specifically methylating the cytochrome c in Neurospora crassa was partially characterized by using unmethylated horse heart cytochrome c as a substrate. This enzyme utilizes S-adenosyl-L-methionine as the methyl donor. An analysis of the distribution of [14C]methyl groups in the peptides obtained by chymotrypsin digestion of the enzymically methylated cytochrome c showed that all of the radioactivity could be recovered within a single peak after chromatography. This indicates that the enzyme methylates a specific amino acid sequence within cytochrome c. On hydrolysis of the radioactive chymotryptic peptide, Me-14C-labelled epsilon -N-mono-methyl-lysine, epsilon-N-dimethyl-lysine and epsilon-N-trimethyl-lysine were identified. The enzyme can easily be extracted from the N. crassa mycelial pads and was purified approx. 30-fold.



1979 ◽  
Vol 179 (1) ◽  
pp. 169-182 ◽  
Author(s):  
C J Wallace ◽  
R E Offord

We describe the N epsilon-acetimidylation of horse heart cytochrome c with retention of biological activity, the cleavage of the modified protein by CNBr, the separation of the fragments, and their further side-chain protection. We describe the manipulation of the amino acid sequences of the fragments by stepwise semisynthetic methods. We have prepared fragments corresponding to residues 66-78 and 66-79 of the protein, as well as the [Asp66] analogue of fragment 66-79. We have prepared the natural sequence and the [o-fluoro-Phe82] analogue of the fragment corresponding to residues 81-104 of the protein, and the [N epsilon-trifluoroacetyl-Lys79], the [N epsilon-dinitrophenyl-Lys79] and the [S-acetamidomethyl-Cys79] analogues of fragment 79-104, and the [N epsilon-Cbz-Lys81] analogue of fragment 80-104. We have coupled back the fragments of natural sequence to form a semisynthetic fragment corresponding to residues 66-104 of the protein. Modified fragments were also coupled to give analogues of the 66-104-residue sequence. In every case the homoserine residue representing methionine-80 was removed from the C-terminus of the 66-80-residue fragment and replaced by methionine on the N-terminus of the 81-104 residue fragment during the preparation of the fragments for coupling. The semisynthetic fragments are ready for specific deprotection and further coupling. We have coupled one such fragment to the (1-65)-peptide to produce semisynthetic [Hse65]cytochrome c. The product has satisfactory characteristics on chemical analysis, and on assay of its biological activity.



1990 ◽  
Vol 271 (3) ◽  
pp. 613-620 ◽  
Author(s):  
J R Vanfleteren ◽  
E A I M Evers ◽  
G Van de Werken ◽  
J J Van Beeumen

The complete amino acid sequence of cytochrome c from the nematode Caenorhabditis elegans was determined. The native protein displays the same spectral properties in the oxidized and reduced states as horse heart cytochrome c. The apoprotein consists of 110 amino acid residues and differs from human cytochrome c by 44 substitutions, one internal deletion, five N-terminal additions and two C-terminal additions. One of the substitutions is the replacement of an ‘invariant’ phenylalanine residue at position 15 by tyrosine. The N-terminal sequence extension contains a short peptide motif, which is highly homologous with a peptide fragment present at the N-terminus of annelid and insect cytochrome c sequences. From the number of amino acid changes and the evolutionary rate of cytochrome c it would appear that nematodes diverged from a line leading to man about 1.4 billion years ago. When similar data based on the amino acid sequences of the histones H1, H2A, H2B and H3 are taken into account, the average estimate is 1.1 +/- 0.1 billion years.



Sign in / Sign up

Export Citation Format

Share Document