scholarly journals Evidence that a beta-adrenergic receptor-associated guanine nucleotide regulatory protein conveys guanosine 5'-O-(3-thiotriphosphate)- dependent adenylate cyclase activity.

1981 ◽  
Vol 256 (16) ◽  
pp. 8718-8723
Author(s):  
J.M. Stadel ◽  
R.G. Shorr ◽  
L.E. Limbird ◽  
R.J. Lefkowitz
1989 ◽  
Vol 257 (4) ◽  
pp. H1088-H1095 ◽  
Author(s):  
F. D. Romano ◽  
S. G. MacDonald ◽  
J. G. Dobson

The effects of adenosine analogues on beta-adrenergic receptor and receptor-independent elicited increases in adenylate cyclase activity were investigated using membranes obtained from primary cultures of adult rat ventricular myocytes. Phenylisopropyladenosine, an A1-receptor agonist, at concentrations of 0.1, 1.0, and 10 microM, maximally inhibited isoproterenol-stimulated adenylate cyclase activity by 35, 55, and 41%, respectively. The inhibition by phenylisopropyladenosine was antagonized by 10 microM theophylline. One micromolar phenylisopropyladenosine was much less effective at attenuating forskolin-stimulated activity, such that the maximum inhibition was 26%. Phenylisopropyladenosine had no effect on adenylate cyclase stimulation by 5'-guanylylimidodiphosphate. Phenylaminoadenosine, an A2 agonist, at 10 microM or greater stimulated adenylate cyclase activity. This effect was not significantly inhibited by theophylline or 0.1 microM 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), which antagonized phenylisopropyladenosine inhibition of isoproterenol-stimulated adenylate cyclase activity. Additionally, N-ethylcarboxamidoadenosine, a nonselective adenosine-receptor agonist, had no effect on adenylate cyclase activity in the absence of DPCPX but stimulated adenylate cyclase activity in the presence of DPCPX. These results indicate that both A1 and A2 receptors exist on the ventricular myocyte sarcolemma. More importantly, the findings suggest that adenosine inhibition of catecholamine-stimulated adenylate cyclase activity is primarily due to an alteration in beta-adrenergic receptor-mediated transduction and perhaps in part by a direct inhibition of the catalytic component.


1981 ◽  
Vol 90 (1) ◽  
pp. 169-175 ◽  
Author(s):  
R F Howard ◽  
J R Sheppard

The adenylate cyclase of C6 glioma cell cultures was characterized for sensitivity to the beta-adrenergic agonist isoproterenol, as well as fluoride, and GTP as a function of the cell cycle. The mitotic phase of the cell cycle was emphasized because both the basal cellular cyclic AMP level and the intact C6 cell's capacity to accumulate cyclic AMP in response to isoproterenol decreased during mitosis. Basal and stimulated adenylate cyclase activities in mitotic cells were decreased relative to the enzyme activities in the G1, S, and G2 phases of the cell cycle. Analysis of the beta-adrenergic receptor using the radioligand(-)[3H]dihydroalprenolol showed that neither ligand affinity nor receptor density changed during the cell cycle, indicating that the reduced adenylate cyclase activity of the mitotic C6 cell was not caused by alterations in this hormone receptor. The reduction in the mitotic cell's basal adenylate cyclase activity was more prominent than the decrease in isoproterenol-, fluoride, or GTP-stimulated activities suggesting that the effectiveness of these enzymes activators (i.e., the efficiency of the coupling mechanism) was not attenuated during mitosis. These studies indicate that the intrinsic catalytic capacity (not the beta-adrenergic receptor or the coupling mechanism) of the C6 adenylate cyclase complex is reduced during mitosis and contributes to the mitotic cell's inability to accumulate and maintain the cyclic AMP concentration at the interphase level.


1988 ◽  
Vol 249 (2) ◽  
pp. 537-542 ◽  
Author(s):  
D Gawler ◽  
G Milligan ◽  
M D Houslay

Insulin caused the inhibition of glucagon-stimulated adenylate cyclase activity in liver plasma membranes, but failed to inhibit this activity in liver membranes from rats made diabetic by treatment with either alloxan or streptozotocin. Treatment of streptozotocin-diabetic rats with insulin, to normalize their blood glucose concentrations, restored this action of insulin. Rats treated with the biguanide drug metformin exhibited a decreased content of the inhibitory guanine nucleotide regulatory protein Gi in liver plasma membranes assessed both structurally, by using a specific polyclonal antibody (AS7), and functionally. Treatment of normal rats with metformin did not alter insulin's ability to inhibit adenylate cyclase in liver plasma membranes; however, metformin treatment of streptozotocin-diabetic rats completely restored this inhibitory action of insulin. Liver plasma membranes from streptozotocin-diabetic animals which either had or had not been treated with metformin had contents of Gi which were less than 10% of those seen in control animals. We conclude that: (i) insulin does not inhibit adenylate cyclase activity through the inhibitory guanine nucleotide regulatory protein Gi; (ii) streptozotocin- and alloxan-induced diabetes elicit a selective insulin-resistant state; and (iii) metformin can exert a post-receptor effect, at the level of the liver plasma membrane, which restores the ability of insulin to inhibit adenylate cyclase.


1985 ◽  
Vol 248 (6) ◽  
pp. E712-E718 ◽  
Author(s):  
M. S. Katz ◽  
S. R. Boland ◽  
S. J. Schmidt

beta-Adrenergic agonist-sensitive adenylate cyclase activity and binding of the beta-adrenergic antagonist(-)-[125I]iodopindolol were studied in rat liver during development of male Fischer 344 rats ages 6-60 days. In liver homogenates maximum adenylate cyclase response to beta-adrenergic agonist (10(-5) M isoproterenol or epinephrine) decreased by 73% (P less than 0.01) between 6 and 60 days, with most of the decrease (56%; P less than 0.01) occurring by 20 days. beta-adrenergic receptor density (Bmax) showed a corresponding decrease of 66% (P less than 0.01) by 20 days without subsequent change. Binding characteristics of stereospecificity, pharmacological specificity, saturability with time, and reversibility were unchanged with age. GTP-, fluoride-, forskolin-, and Mn2+-stimulated adenylate cyclase activities also decreased during development, suggesting a decrease of activity of the catalytic component and/or guanine nucleotide regulatory component of adenylate cyclase. These results indicate that the developmental decrease of beta-adrenergic agonist-sensitive adenylate cyclase activity may result from decreased numbers of beta-adrenergic receptors. Developmental alterations of nonreceptor components of the enzyme may also contribute to changes of catecholamine-sensitive adenylate cyclase.


1983 ◽  
Vol 214 (1) ◽  
pp. 93-98 ◽  
Author(s):  
C M Heyworth ◽  
M D Houslay

Membrane fractions obtained from hepatocytes treated with glucagon exhibited a decreased glucagon (with or without GTP)-stimulated adenylate cyclase activity. A maximum effect was seen in around 5 min. No change in the rate of cyclic AMP production was observed for the basal, NaF-, p[NH]ppG (guanosine 5′-[beta, gamma-imido]-triphosphate)- and GTP-stimulated states of the enzyme. The lag observed in the p[NH]ppG-stimulated adenylate cyclase activity of native membranes was abolished when membranes from glucagon-pretreated cells were used. When Mn2+ replaced Mg2+ in the assays, the magnitude of the apparent desensitization was decreased. Mn2+ abolished the lag of onset of p[NH]ppG-stimulated activity in native membranes. The desensitization process was dose-dependent on glucagon, which exhibited a Ka of 4 X 10(-10) M. Depletion of intracellular ATP did not affect this process. It is suggested that this desensitization occurs at the level of the guanine nucleotide-regulatory protein.


Sign in / Sign up

Export Citation Format

Share Document