rapid modulation
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 19)

H-INDEX

40
(FIVE YEARS 2)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Julien Gronnier ◽  
Christina M Franck ◽  
Martin Stegmann ◽  
Thomas A DeFalco ◽  
Alicia Abarca ◽  
...  

Spatial partitioning is a propensity of biological systems orchestrating cell activities in space and time. The dynamic regulation of plasma membrane nano-environments has recently emerged as a key fundamental aspect of plant signaling, but the molecular components governing it are still mostly unclear. The receptor kinase FERONIA (FER) controls ligand-induced complex formation of the immune receptor kinase FLAGELLIN SENSING 2 (FLS2) with its co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), and perception of the endogenous peptide hormone RAPID ALKALANIZATION FACTOR 23 (RALF23) by FER inhibits immunity. Here, we show that FER regulates the plasma membrane nanoscale organization of FLS2 and BAK1. Our study demonstrates that akin to FER, leucine-rich repeat (LRR) extensin proteins (LRXs) contribute to RALF23 responsiveness, regulate BAK1 nanoscale organization and immune signaling. Furthermore, RALF23 perception leads to rapid modulation of FLS2 and BAK1 nanoscale organization, and its inhibitory activity on immune signaling relies on FER kinase activity. Our results suggest that perception of RALF peptides by FER and LRXs actively modulates plasma membrane nanoscale organization to regulate cell surface signaling by other ligand-binding receptor kinases.


Author(s):  
Özüm Emre Aşırım

AbstractSupercontinuum generating sources, which incorporate a non-linear medium that can generate a wideband intensity spectrum under high-power excitation, are ideal for many applications of photonics such as spectroscopy and imaging. Supercontinuum generation using ultra-miniaturized devices is of great interest for on-chip imaging, on-chip measurement, and for future integrated photonic devices. In this study, semiconductor nano-antennas are proposed for ultra-broadband supercontinuum generation via analytical and numerical investigation of the electric field wave equation and the Lorentz dispersion model, incorporating semiconductor electron dynamics under optical excitation. It is shown that by a rapid modulation of the carrier injection rate for a semiconductor nano-antenna, one can generate an ultra-wideband supercontinuum that extends from the far-infrared (Far-IR) range to the deep-ultraviolet (Deep-UV) range for an infrared excitation of arbitrary intensity level. The modulation of the injection rate is achieved by high-intensity pulsed-pump irradiation of the nano-antenna, which has a fast nonradiative electron recombination mechanism that is on the order of sub-picoseconds. It is shown that when the pulse period of the pump irradiation is of the same order with the electron recombination time, rapid modulation of the free electron density occurs and electric energy accumulates in the nano-antenna, allowing for the generation of a broad supercontinuum. The numerical results are compared with the semiempirical second harmonic generation efficiency results for validation and a mean accuracy of 99.7% is observed. The aim of the study is to demonstrate that semiconductor nano-antennas can be employed to achieve superior supercontinuum generation performance at the nanoscale and the process can be programmed in an adaptive manner for continuous spectral shaping via tuning the pulse period of the pump irradiation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jason Cosgrove ◽  
Kieran Alden ◽  
Jens V. Stein ◽  
Mark C. Coles ◽  
Jon Timmis

To effectively navigate complex tissue microenvironments, immune cells sense molecular concentration gradients using G-protein coupled receptors. However, due to the complexity of receptor activity, and the multimodal nature of chemokine gradients in vivo, chemokine receptor activity in situ is poorly understood. To address this issue, we apply a modelling and simulation approach that permits analysis of the spatiotemporal dynamics of CXCR5 expression within an in silico B-follicle with single-cell resolution. Using this approach, we show that that in silico B-cell scanning is robust to changes in receptor numbers and changes in individual kinetic rates of receptor activity, but sensitive to global perturbations where multiple parameters are altered simultaneously. Through multi-objective optimization analysis we find that the rapid modulation of CXCR5 activity through receptor binding, desensitization and recycling is required for optimal antigen scanning rates. From these analyses we predict that chemokine receptor signaling dynamics regulate migration in complex tissue microenvironments to a greater extent than the total numbers of receptors on the cell surface.


2021 ◽  
Author(s):  
Da-Jiang Zheng ◽  
Daniel E Okobi ◽  
Ryan Shu ◽  
Rania Agrawal ◽  
Samantha K Smith ◽  
...  

Vocalizations, like many social displays, are often elaborate, rhythmically structured behaviors that are modulated by a complex combination of cues. Vocal motor patterns require close coordination of neural circuits governing the muscles of the larynx, jaw, and respiratory system. In the elaborate vocalization of Alstons singing mouse (Scotinomys teguina), for example, each note of its rapid, frequency-modulated trill is accompanied by equally rapid modulation of breath and gape. To elucidate the neural circuitry underlying this behavior, we introduced the polysynaptic retrograde neuronal tracer pseudorabies virus (PRV) into the cricothyroid and digastricus muscles, which control frequency modulation and jaw opening respectively. Each virus singly labels ipsilateral motoneurons (nucleus ambiguous for cricothyroid, and motor trigeminal nucleus for digastricus). We find that the two isogenic viruses heavily and bilaterally co-label neurons in the gigantocellular reticular formation, a putative central pattern generator. The viruses also show strong co-labeling in compartments of the midbrain including the ventrolateral periaqueductal grey and the parabrachial nucleus, two structures strongly implicated in vocalizations. In the forebrain, regions important to social cognition and energy balance both exhibit extensive co-labeling. This includes the paraventricular and arcuate nuclei of the hypothalamus, the lateral hypothalamus, preoptic area, extended amygdala, central amygdala, and the bed nucleus of the stria terminalis. Finally, we find doubly labeled neurons in M1 motor cortex previously described as laryngeal, as well as in the prelimbic cortex, which indicate these cortical regions play a role in vocal production. Although we observe some novel patterns of double-labelling, the progress of both viruses is broadly consistent with vertebrate-general patterns of vocal circuitry, as well as with circuit models derived from primate literature.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Boris P Chagnaud ◽  
Jonathan T Perelmuter ◽  
Paul M Forlano ◽  
Andrew H Bass

Precise neuronal firing is especially important for behaviors highly dependent on the correct sequencing and timing of muscle activity patterns, such as acoustic signaling. Acoustic signaling is an important communication modality for vertebrates, including many teleost fishes. Toadfishes are well known to exhibit high temporal fidelity in synchronous motoneuron firing within a hindbrain network directly determining the temporal structure of natural calls. Here, we investigated how these motoneurons maintain synchronous activation. We show that pronounced temporal precision in population-level motoneuronal firing depends on gap junction-mediated, glycinergic inhibition that generates a period of reduced probability of motoneuron activation. Super-resolution microscopy confirms glycinergic release sites formed by a subset of adjacent premotoneurons contacting motoneuron somata and dendrites. In aggregate, the evidence supports the hypothesis that gap junction-mediated, glycinergic inhibition provides a timing mechanism for achieving synchrony and temporal precision in the millisecond range for rapid modulation of acoustic waveforms.


2021 ◽  
pp. 193229682199482
Author(s):  
Azure D. Grant ◽  
Dana M. Lewis ◽  
Lance J. Kriegsfeld

Background: Blood glucose and insulin exhibit coordinated daily and hourly rhythms in people without diabetes (nonT1D). Although the presence and stability of these rhythms are associated with euglycemia, it is unknown if they (1) are preserved in individuals with type 1 diabetes (T1D) and (2) vary by therapy type. In particular, Hybrid Closed Loop (HCL) systems improve glycemia in T1D compared to Sensor Augmented Pump (SAP) therapies, but the extent to which either recapitulates coupled glucose and insulin rhythmicity is not well described. In HCL systems, more rapid modulation of glucose via automated insulin delivery may result in greater rhythmic coordination and euglycemia. Such precision may not be possible in SAP systems. We hypothesized that HCL users would exhibit fewer hyperglycemic event, superior rhythmicity, and coordination relative to SAP users. Methods: Wavelet and coherence analyses were used to compare glucose and insulin delivery rate (IDR) within-day and daily rhythms, and their coordination, in 3 datasets: HCL (n = 150), SAP (n = 89), and nonT1D glucose (n = 16). Results: Glycemia, correlation between normalized glucose and IDR, daily coherence of glucose and IDR, and amplitude of glucose oscillations differed significantly between SAP and HCL users. Daily glucose rhythms differed significantly between SAP, but not HCL, users and nonT1D individuals. Conclusions: SAP use is associated with greater hyperglycemia, higher amplitude glucose fluctuations, and a less stably coordinated rhythmic phenotype compared to HCL use. Improvements in glucose and IDR rhythmicity may contribute to the overall effectiveness of HCL systems.


2021 ◽  
Author(s):  
Yu-Hsuan Tsai ◽  
Tomohiro Doura ◽  
Shigeki Kiyonaka

Approaches for selective and rapid modulation are ideal for investigating the physiological roles of proteins. This review focuses on chemogenetic approaches in which designer molecules are attached to the target protein for the modulation of proteins in live cells.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Shan He ◽  
Zefang Wang ◽  
Wei Pang ◽  
Chang Liu ◽  
Miaosen Zhang ◽  
...  

A gigahertz acoustic streaming effect stimulates PC12 cell structure change within 10 min, and produces a higher ratio of neurite-bearing cells compared to NGF stimulation. This method can be of single-cell modulation due to microminiaturization.


Author(s):  
Josette Zaklit ◽  
Gale L. Craviso ◽  
Normand Leblanc ◽  
P. Thomas Vernier ◽  
Esin B. Sözer

2020 ◽  
Vol 27 (37) ◽  
pp. 6384-6406 ◽  
Author(s):  
Zuo Zhang ◽  
Hongli Zhou ◽  
Jiyin Zhou

NG2-glia, also called Oligodendrocyte Precursor Cells (OPCs), account for approximately 5%-10% of the cells in the developing and adult brain and constitute the fifth major cell population in the central nervous system. NG2-glia express receptors and ion channels involved in rapid modulation of neuronal activities and signaling with neuronal synapses, which have functional significance in both physiological and pathological states. NG2-glia participate in quick signaling with peripheral neurons via direct synaptic touches in the developing and mature central nervous system. These distinctive glia perform the unique function of proliferating and differentiating into oligodendrocytes in the early developing brain, which is critical for axon myelin formation. In response to injury, NG2-glia can proliferate, migrate to the lesions, and differentiate into oligodendrocytes to form new myelin sheaths, which wrap around damaged axons and result in functional recovery. The capacity of NG2-glia to regulate their behavior and dynamics in response to neuronal activity and disease indicate their critical role in myelin preservation and remodeling in the physiological state and in repair in the pathological state. In this review, we provide a detailed summary of the characteristics of NG2-glia, including their heterogeneity, the regulators of their proliferation, and the modulators of their differentiation into oligodendrocytes.


Sign in / Sign up

Export Citation Format

Share Document