scholarly journals Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans.

1981 ◽  
Vol 256 (11) ◽  
pp. 5450-5458 ◽  
Author(s):  
D.J. Steenkamp ◽  
H.D. Peck
2021 ◽  
Vol 12 ◽  
Author(s):  
Heribert Cypionka ◽  
Jan-Ole Reese

Proton release and uptake induced by metabolic activities were measured in non-buffered cell suspensions by means of a pH electrode. Recorded data were used for simulating substrate turnover rates by means of a new freeware app (proton.exe). The program applies Michaelis-Menten or first-order kinetics to the metabolic processes and allows for parametrization of simultaneously ongoing processes. The simulation includes changes of the transmembrane ΔpH, membrane potential and ATP gains, and demonstrates the principles of chemiosmotic energy conservation. In our experiments, the versatile sulfate-reducing bacterium Desulfovibrio desulfuricans CSN (DSM 9104) was used as model organism. We analysed sulfate uptake by proton-sulfate symport, scalar alkalinization by sulfate reduction to sulfide, as well as nitrate and nitrite reduction to ammonia, and electron transport-coupled proton translocation. Two types of experiments were performed: In oxidant pulse experiments, cells were kept under H2, and micromolar amounts of sulfate, nitrate or nitrite were added. For reductant pulse experiments, small amounts of H2-saturated KCl were added to cells incubated under N2 with an excess of one of the above-mentioned electron acceptors. To study electron-transport driven proton translocation, the membrane potential was neutralized by addition of KSCN (100 mM). H+/e– ratios of electron-transport driven proton translocation were calculated by simulation with proton.exe. This method gave lower but more realistic values than logarithmic extrapolation. We could verify the kinetic simulation parameters found with proton.exe using series of increasing additions of the reactants. Our approach allows for studying a broad variety of proton-related metabolic activities at micromolar concentrations and time scales of seconds to minutes.


1982 ◽  
Vol 257 (15) ◽  
pp. 8596-8599 ◽  
Author(s):  
K S Huang ◽  
M J Liao ◽  
C M Gupta ◽  
N Royal ◽  
K Biemann ◽  
...  

Author(s):  
Lynne E. Macaskie ◽  
John Collins ◽  
Iryna P. Mikheenko ◽  
Jaime Gomez‐Bolivar ◽  
Mohamed L. Merroun ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stephan Hirschi ◽  
David Kalbermatter ◽  
Zöhre Ucurum ◽  
Thomas Lemmin ◽  
Dimitrios Fotiadis

AbstractThe green-light absorbing proteorhodopsin (GPR) is the archetype of bacterial light-driven proton pumps. Here, we present the 2.9 Å cryo-EM structure of pentameric GPR, resolving important residues of the proton translocation pathway and the oligomerization interface. Superposition with the structure of a close GPR homolog and molecular dynamics simulations reveal conformational variations, which regulate the solvent access to the intra- and extracellular half channels harbouring the primary proton donor E109 and the proposed proton release group E143. We provide a mechanism for the structural rearrangements allowing hydration of the intracellular half channel, which are triggered by changing the protonation state of E109. Functional characterization of selected mutants demonstrates the importance of the molecular organization around E109 and E143 for GPR activity. Furthermore, we present evidence that helices involved in the stabilization of the protomer interfaces serve as scaffolds for facilitating the motion of the other helices. Combined with the more constrained dynamics of the pentamer compared to the monomer, these observations illustrate the previously demonstrated functional significance of GPR oligomerization. Overall, this work provides molecular insights into the structure, dynamics and function of the proteorhodopsin family that will benefit the large scientific community employing GPR as a model protein.


Sign in / Sign up

Export Citation Format

Share Document