scholarly journals Mannitol Dehydrogenase from Agaricus campestris

1963 ◽  
Vol 238 (11) ◽  
pp. 3539-3541
Author(s):  
John M. Edmundowicz ◽  
John C. Wriston
2017 ◽  
Vol 68 (9) ◽  
pp. 2196-2203 ◽  
Author(s):  
Mara Crisan ◽  
Gheorghe Maria

Novel coupled enzymatic systems reported important applications in the industrial bio-catalysis. Multi-enzymatic reactions can successfully replace complex chemical syntheses, using milder reaction conditions, and generating less waste. For such systems acting simultaneously, the model-based engineering calculations (design, reactor operation optimization) are difficult tasks, because they must account for interacting reactions, differences in enzymes optimal activity domains and deactivation kinetics. The determination of the optimal operating mode (enzyme ratios, enzyme feeding policy, temperature, pH) often turns into a difficult multi-objective optimization problem with multiple constraints to be solved for every particular system. The paper focuses on applying a modular screening procedure that can identify the optimal operating policy of an enzymatic reactor, which minimizes the enzyme consumption, given the process kinetic model, and an imposed production capacity. Following an optimization procedure, the process effectiveness is evaluated in a systematic approach, by including simple batch reactor (BR), batch with intermittent addition of the key-enzyme following certain optimal policies (BRP). Exemplification is made for the case of the enzymatic reduction of D-fructose to mannitol by using suspended MDH (mannitol dehydrogenase) and NADH (Nicotinamide adenine dinucleotide) cofactor, with the in-situ continuous regeneration of the cofactor by the expense of formate degradation in the presence of suspended FDH (Formate dehydrogenase).


2010 ◽  
Vol 9 (9) ◽  
pp. 1398-1402 ◽  
Author(s):  
Guillermo Aguilar-Osorio ◽  
Patricia A. vanKuyk ◽  
Bernhard Seiboth ◽  
Dirk Blom ◽  
Peter S. Solomon ◽  
...  

ABSTRACT The presence of a mannitol cycle in fungi has been subject to discussion for many years. Recent studies have found no evidence for the presence of this cycle and its putative role in regenerating NADPH. However, all enzymes of the cycle could be measured in cultures of Aspergillus niger. In this study we have analyzed the localization of two enzymes from the pathway, mannitol dehydrogenase and mannitol-1-phosphate dehydrogenase, and the expression of their encoding genes in nonsporulating and sporulating cultures of A. niger. Northern analysis demonstrated that mpdA was expressed in both sporulating and nonsporulating mycelia, while expression of mtdA was expressed only in sporulating mycelium. More detailed studies using green fluorescent protein and dTomato fused to the promoters of mtdA and mpdA, respectively, demonstrated that expression of mpdA occurs in vegetative hyphae while mtdA expression occurs in conidiospores. Activity assays for MtdA and MpdA confirmed the expression data, indicating that streaming of these proteins is not likely to occur. These results confirm the absence of the putative mannitol cycle in A. niger as two of the enzymes of the cycle are not present in the same part of A. niger colonies. The results also demonstrate the existence of spore-specific genes and enzymes in A. niger.


1928 ◽  
Vol 3 (1) ◽  
pp. 91-94 ◽  
Author(s):  
Donald Frear ◽  
J. F. Styer ◽  
D. E. Haley

2007 ◽  
Vol 44 (10) ◽  
pp. 965-978 ◽  
Author(s):  
Paola Ceccaroli ◽  
Roberta Saltarelli ◽  
Michele Guescini ◽  
Emanuela Polidori ◽  
Michele Buffalini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document