enzymatic reduction
Recently Published Documents


TOTAL DOCUMENTS

408
(FIVE YEARS 28)

H-INDEX

49
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Amy Jane Foster

<p><b>The potential of bacterial cell wall components in the treatment of various cancers was initially realised in the late 1800s during pioneering work with Coley’s toxins. Since this preliminary work, efforts have been concentrated on the isolation and identification of bacterial components that lead to tumour regression. Trehalose dimycolates (TDMs) are compounds isolated from the M. tuberculosis cell wall and are known to activate macrophages to give a polarised Th1 immune response resulting in reduced tumour burden. Consequently, TDMs have shown great promise in the treatment of solid tumours.</b></p> <p>In this thesis, work is presented towards the synthesis of trehalose glycolipid prodrugs that will be specifically activated inside the hypoxic tumour microenvironment, and thereby lead to a more selective form of cancer therapy. These hypoxia-activated trehalose glycolipids incorporate a nitroimidazole trigger that fragments upon enzymatic reduction (in the absence of oxygen) to give the active glycolipid. Throughout the course of this work, it was determined that the nitroimidazole trigger group could not be directly attached to the glycolipid and thus, an alternative carbonate-linker strategy was explored through the use of a reporter fluoroprobe. The validity of this approach was determined in various enzyme and cell-based assays.</p>


2021 ◽  
Author(s):  
◽  
Amy Jane Foster

<p><b>The potential of bacterial cell wall components in the treatment of various cancers was initially realised in the late 1800s during pioneering work with Coley’s toxins. Since this preliminary work, efforts have been concentrated on the isolation and identification of bacterial components that lead to tumour regression. Trehalose dimycolates (TDMs) are compounds isolated from the M. tuberculosis cell wall and are known to activate macrophages to give a polarised Th1 immune response resulting in reduced tumour burden. Consequently, TDMs have shown great promise in the treatment of solid tumours.</b></p> <p>In this thesis, work is presented towards the synthesis of trehalose glycolipid prodrugs that will be specifically activated inside the hypoxic tumour microenvironment, and thereby lead to a more selective form of cancer therapy. These hypoxia-activated trehalose glycolipids incorporate a nitroimidazole trigger that fragments upon enzymatic reduction (in the absence of oxygen) to give the active glycolipid. Throughout the course of this work, it was determined that the nitroimidazole trigger group could not be directly attached to the glycolipid and thus, an alternative carbonate-linker strategy was explored through the use of a reporter fluoroprobe. The validity of this approach was determined in various enzyme and cell-based assays.</p>


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1282
Author(s):  
Shiting Guo ◽  
Xiaoxu Tan ◽  
Yuxian Wang ◽  
Kai Li ◽  
Chuanjuan Lü ◽  
...  

Recently, an in vitro enzymatic cascade was constructed to transform glycerol into the high-value platform chemical pyruvate. However, the low activity of dihydroxy acid dehydratase from Sulfolobus solfataricus (SsDHAD) limited the efficiency. In this study, the enzymatic reduction of pyruvate catalyzed by d-lactate dehydrogenase from Pseudomonas aeruginosa PAO1 was used to assay the activities of dihydroxy acid dehydratases. Dihydroxy acid dehydratase from Paralcaligenes ureilyticus (PuDHT) was identified as the most efficient candidate for glycerate dehydration. After the optimization of the catalytic temperature for the enzymatic cascade, comprising alditol oxidase from Streptomyces coelicolor A3, PuDHT, and catalase from Aspergillus niger, 20.50 ± 0.27 mM of glycerol was consumed in 4 h to produce 18.95 ± 0.97 mM of pyruvate with a productivity 12.15-fold higher than the previous report using SsDHAD. The enzymatic cascade was further coupled with the pyruvate decarboxylase from Zymomonas mobile for the production of another platform compound, acetoin. Acetoin at a concentration of 8.52 ± 0.12 mM was produced from 21.62 ± 0.19 mM of glycerol with a productivity of 1.42 ± 0.02 mM h−1.


Dynamics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 134-154
Author(s):  
Gheorghe Maria ◽  
Ioana Mirela Peptănaru

Multi-enzymatic reactions can successfully replace complex chemical syntheses, using milder reaction conditions, and generating less waste. The present model-based analysis compares the performances of several optimally operated Batch Reactors (BR) with those of an optimally operated serial Sequence of BRs (SeqBR). In multi-enzymatic systems, SeqBR could be more advantageous and flexible, allowing the optimization of costly enzymes amounts used in each BR in the series. Exemplification was made for the bi-enzymatic reduction of D-fructose to mannitol by using MDH (mannitol dehydrogenase) and the NADH cofactor, with the in situ continuous regeneration of NADH at the expense of formate degradation in the presence of FDH (formate dehydrogenase). For such coupled enzymatic systems, the model-based engineering evaluations are difficult tasks, because they must account for the common species’ initial levels, their interaction, and their dynamics. The determination of optimal operating modes of sole BR or of a SeqBR turns into a multi-objective optimization problem with multiple constraints to be solved for every particular system. The study presents multiple elements of novelty: (i) the proof of higher performances of an optimal SeqBR (including N-BRs) compared to a sole optimal BR operated for N-number of runs and (ii) the effect of using a multi-objective optimization criteria on SeqBR adjustable dynamics.


Oxygen ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 46-61
Author(s):  
Helen Rinderknecht ◽  
Sabrina Ehnert ◽  
Bianca Braun ◽  
Tina Histing ◽  
Andreas K. Nussler ◽  
...  

Many cells in the human body strongly react on decreased oxygen concentrations, generally defined as hypoxia. Therefore, inducing hypoxia in vitro is essential for research. Classically, hypoxia is induced using a hypoxia chamber, but alternative methods exist that do not require special equipment. Here, we compared three different methods to induce hypoxia without a hypoxia chamber: the chemical stabilization of HIF-1α by CoCl2, the decrease in pericellular oxygen concentrations by increased media height, and the consumption of oxygen by an enzymatic system. Hypoxia induction was further analyzed within three different cell culture systems: 2D (adherent) osteoprogenitor cells, monocytic (suspension) cells, and in a 3D in vitro fracture hematoma model. The different methods were analyzed within the scope of fracture healing regarding inflammation and differentiation. We could show that all three induction methods were feasible for hypoxia induction within adherent cells. Increased media heights did not stimulate a hypoxic response within suspension cells and in the 3D system. Chemical stabilization of HIF-1α showed limitations when looking at the expression of cytokines in osteoprogenitors and monocytes. Enzymatic reduction of oxygen proofed to be most effective within all three systems inducing inflammation and differentiation.


Author(s):  
Rashmi Kumari ◽  
Vasumathy R ◽  
Dhanya Sunil ◽  
Raghumani Singh Ningthoujam ◽  
Badri Narain Pandey ◽  
...  

AbstractThe bioreductive enzymes typically upregulated in hypoxic tumor cells can be targeted for developing diagnostic and drug delivery applications. In this study, a new fluorescent probe 4−(6−nitro−1,3−dioxo−1H−benzo[de]isoquinolin−2(3H)−yl)benzaldehyde (NIB) based on a nitronaphthalimide skeleton that could respond to nitroreductase (NTR) overexpressed in hypoxic tumors is designed and its application in imaging tumor hypoxia is demonstrated. The docking studies revealed favourable interactions of NIB with the binding pocket of NTR-Escherichia coli. NIB, which is synthesized through a simple and single step imidation of 4−nitro−1,8−naphthalic anhydride displayed excellent reducible capacity under hypoxic conditions as evidenced from cyclic voltammetry investigations. The fluorescence measurements confirmed the formation of identical products (NIB-red) during chemical as well as NTR−aided enzymatic reduction in the presence of NADH. The potential fluorescence imaging of hypoxia based on NTR-mediated reduction of NIB is confirmed using in-vitro cell culture experiments using human breast cancer (MCF−7) cells, which displayed a significant change in the fluorescence colour and intensity at low NIB concentration within a short incubation period in hypoxic conditions. Graphical abstract


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 932
Author(s):  
Daniel Schwendenwein ◽  
Anna K. Ressmann ◽  
Marcello Entner ◽  
Viktor Savic ◽  
Margit Winkler ◽  
...  

In this study, we present the synthesis of chiral fragrance aldehydes, which was tackled by a combination of chemo-catalysis and a multi-enzymatic in vivo cascade reaction and the development of a highly versatile high-throughput assay for the enzymatic reduction of carboxylic acids. We investigated a biocompatible metal-catalyzed synthesis for the preparation of α or β substituted cinnamic acid derivatives which were fed directly into the biocatalytic system. Subsequently, the target molecules were synthesized by an enzymatic cascade consisting of a carboxylate reduction, followed by the selective C-C double bond reduction catalyzed by appropriate enoate reductases. We investigated a biocompatible oxidative Heck protocol and combined it with cells expressing a carboxylic acid reductase from Neurospora crassa (NcCAR) and an ene reductase from Saccharomyces pastorianus for the production fragrance aldehydes.


2021 ◽  
Author(s):  
Hrudananda Sahoo ◽  
Sushama Kumari ◽  
Darpa Saurav Jyethi ◽  
Umesh Chandra Naik

Abstract The effluent generated from fertilizer plants in Paradeep in the coast of the Bay of Bengal is the major pollutant causing health hazard in the vicinity of the area with respect to plants, animals and microbes. Samples of effluent were found to contain heavy metals (mg L-1): Cr (100), Ni (36.975), Mn (68.673), Pb (20.133), Cu (74.44), Zn (176.716), Hg (5.358) and As (24.287) as analyzed by XRF. Indigenous bacterial strains were screened for chromate and multi-metal resistance to remediate the toxic pollutants. The isolated strain G1 was identified as Serratia sp. through 16S-rDNA sequence homology. Potent strain Serratia sp. GP01 treated with 100 mg L-1 of K2Cr2O7 has shown the efficacy of reducing 69.05 mg L-1 of Cr over 48 h of incubation. Further, presence of chromate reductase gene (ChR) in Serratia sp. confirmed the enzymatic reduction of Cr (VI). SEM-EDX and SEM mapping analysis revealed substantial biosorption of Cr and other heavy metals present in effluent by Serratia sp. GP01. Antioxidant enzymes such as catalase (72.15 U mL-1), SOD (57.14 U mL-1) and peroxidase (62.49 U mL-1) were found to be higher as compared to the control condition. FTIR study also revealed the role of N-H, O-H, C = C, C-H, C-O, C-N, and C = O functional groups of the cell surface of Serratia sp. treated with K2Cr2O7 and effluent from the fertilizer industry. Isolated strain Serratia sp. could be used for the detoxification of Cr (VI) and other heavy metals in fertilizer plant effluent.


Future Foods ◽  
2021 ◽  
pp. 100047
Author(s):  
Antti Nyyssölä ◽  
Anni Nisov ◽  
Martina Lille ◽  
Markus Nikinmaa ◽  
Natalia Rosa-Sibakov ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 316
Author(s):  
Edward J. O’Loughlin ◽  
Maxim I. Boyanov ◽  
Kenneth M. Kemner

Fe(II)-bearing minerals (magnetite, siderite, green rust, etc.) are common products of microbial Fe(III) reduction, and they provide a reservoir of reducing capacity in many subsurface environments that may contribute to the reduction of redox active elements such as vanadium; which can exist as V(V), V(IV), and V(III) under conditions typical of near-surface aquatic and terrestrial environments. To better understand the redox behavior of V under ferrugenic/sulfidogenic conditions, we examined the interactions of V(V) (1 mM) in aqueous suspensions containing 50 mM Fe(II) as magnetite, siderite, vivianite, green rust, or mackinawite, using X-ray absorption spectroscopy at the V K-edge to determine the valence state of V. Two additional systems of increased complexity were also examined, containing either 60 mM Fe(II) as biogenic green rust (BioGR) or 40 mM Fe(II) as a mixture of biogenic siderite, mackinawite, and magnetite (BioSMM). Within 48 h, total solution-phase V concentrations decreased to <20 µM in all but the vivianite and the biogenic BiSMM systems; however, >99.5% of V was removed from solution in the BioSMM and vivianite systems within 7 and 20 months, respectively. The most rapid reduction was observed in the mackinawite system, where V(V) was reduced to V(III) within 48 h. Complete reduction of V(V) to V(III) occurred within 4 months in the green rust system, 7 months in the siderite system, and 20 months in the BioGR system. Vanadium(V) was only partially reduced in the magnetite, vivianite, and BioSMM systems, where within 7 months the average V valence state stabilized at 3.7, 3.7, and 3.4, respectively. The reduction of V(V) in soils and sediments has been largely attributed to microbial activity, presumably involving direct enzymatic reduction of V(V); however the reduction of V(V) by Fe(II)-bearing minerals suggests that abiotic or coupled biotic–abiotic processes may also play a critical role in V redox chemistry, and thus need to be considered in modeling the global biogeochemical cycling of V.


Sign in / Sign up

Export Citation Format

Share Document