kinetic and thermodynamic studies
Recently Published Documents


TOTAL DOCUMENTS

789
(FIVE YEARS 224)

H-INDEX

64
(FIVE YEARS 15)

2022 ◽  
Author(s):  
Amalachukwu Ifeyinwa Obi ◽  
Vincent Ishmael Ajiwe

Abstract Oil spill remediation has continued to be a challenge in the world today. Thus efforts are still been made to develop more efficient oil spill mop up techniques. Natural adsorption with agricultural wastes, which otherwise constitute environmental pollution, has become an attractive technique for oil spill mop. Acetylation using acetic anhydride with iodine catalyst was carried out to improve the hydrophobicity of African oil bean seed pod (AOBSP), which is a lignocellulosic material and as such is naturally hydrophilic. Characterization of the raw and acetylated AOBSP were done using SEM, BET and FTIR analyses. Batch crude oil sorption tests were performed using both the raw and acetylated AOBSP. Isotherm, kinetic and thermodynamic studies were also carried out. FTIR analysis showed evidence of successful acetylation of AOBSP and adsorption of crude oil onto the raw and acetylated AOBSP. SEM and BET analyses showed improvement of the surface properties of AOBSP by the acetylation process. The BET surface area increased from 226.4 m2/g for the raw AOBSP to 310.0 m2/g for the acetylated AOBSP. Oil sorption was found to be by monolayer coverage, with monolayer sorption capacity of 5000mg/g and 12500mg/g for raw and acetylated AOBSP, respectively. The rate-controlling mechanism for the sorption processes was chemisorption. Negative values of ΔGo, ΔHo and ΔSo were obtained, showing that the sorption processes were feasible, spontaneous and exothermic, with a degree of orderliness at the solid–mixture interface. The results obtained from this study show that both raw and acetylated AOBSP are efficient oil sorbents with potentials for further improvement for oil spill mop.


2021 ◽  
pp. 1-14
Author(s):  
Anastasia Anceschi ◽  
Marina Zoccola ◽  
Raffaella Mossotti ◽  
Parag Bhavsar ◽  
Giulia Dalla Fontana ◽  
...  

2021 ◽  
Author(s):  
Sobhan Maleky ◽  
Ali Asadipour ◽  
Alireza Nasiri ◽  
Rafael Luque ◽  
Maryam Faraji

Abstract This study aimed to synthesize Fe3O4@Methylcellulose/3-Aminopropyltrimethoxysilane (Fe3O4@MC/APTMS) as a new magnetic nano-biocomposite by a facile, fast, and new microwave-assisted method and to be utilized as an adsorbent for tetracycline (TC) removal from aqueous solutions. Fe3O4@MC/APTMS was characterized by Fourier transform-infrared (FTIR), Field emission scanning electron microscopy (FESEM), Energy dispersive spectroscopy (EDS), Mapping, X-ray diffraction (XRD), Thermal gravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) and vibrating sample magnetometer (VSM). The point of zero charge (pHzpc) value of the nano-biocomposite was estimated to be 6.8 by the solid addition method. Optimum conditions were obtained in TC concentration: 10 mg L−1, adsorbent dosage: 80 mg L−1, contact time: 90 min, and solution pH: 6 with the maximum TC removal of 90% and 65.41% in synthetic and actual samples, respectively. The kinetic and isotherm equations pointed to a pseudo-second order kinetic and Langmuir isotherm optimum fitting models. Based on the values of entropy changes (ΔS) (50.04 J/mol k), the enthalpy changes (ΔH) (9.26 kJ/mol), and the negative Gibbs free energy changes (ΔG), the adsorption process was endothermic, random, and spontaneous. The synthesized adsorbent exhibited outstanding properties, including proper removal efficiency of TC, excellent reusability, and simple separation from aqueous media by a magnet. Consequently, it is highly desirable that Fe3O4@MC/APTMS magnetic nano-biocomposite could be used as a promising adsorbent for TC adsorption from aqueous solutions.


Author(s):  
Ülküye Dudu Gül ◽  
Zeynep Mine Şenol ◽  
Burcu Ertit Taştan

Abstract The biosorption properties of a newly isolated and identified cyanobacterium called Desertifilum tharense were investigated in the current study. Following morphological and molecular identification (16S rRNA sequencing analysis), the food colorant removal potential of this new isolate was determined. Moreover, the isotherm, kinetic, and thermodynamic studies were performed, and also the biosorbent characterization was studied after and before colorant biosorption with FTIR and SEM analysis. Additionally, the changes in chlorophyll content of the biosorbent were examined after and before colorant treatment. The newly isolated cyanobacterial biosorbent removed 97% of Allura red food colorant/dye at 1,500 mg L−1 initial dye concentration successfully at optimal conditions. Langmuir isotherm and pseudo-second-order kinetic models were fitted with the biosorption of the dye. The D-R model showed that the biosorption process physically occurred. The chlorophyll-a content of the biosorbent was negatively affected by the biosorption. The newly isolated and identified cyanobacterium seems to be a successful candidate for the use to treat highly dye concentrated wastewaters.


Sign in / Sign up

Export Citation Format

Share Document