scholarly journals In vitro transcription of vesicular stomatitis virus. Incorporation of deoxyguanosine and deoxycytidine, and formation of deoxyguanosine caps.

1982 ◽  
Vol 257 (6) ◽  
pp. 2968-2973
Author(s):  
M Schubert ◽  
R A Lazzarini
2008 ◽  
Vol 82 (15) ◽  
pp. 7729-7734 ◽  
Author(s):  
Tomoaki Ogino ◽  
Amiya K. Banerjee

ABSTRACT The RNA-dependent RNA polymerase L protein of vesicular stomatitis virus (VSV) elicits GTPase and RNA:GDP polyribonucleotidyltransferase (PRNTase) activities to produce a 5′-cap core structure, guanosine(5′)triphospho(5′)adenosine (GpppA), on viral mRNAs. Here, we report that the L protein produces an unusual cap structure, guanosine(5′)tetraphospho(5′)adenosine (GppppA), that is formed by the transfer of the 5′-monophosphorylated viral mRNA start sequence to GTP by the PRNTase activity before the removal of the γ-phosphate from GTP by GTPase. Interestingly, GppppA-capped and polyadenylated full-length mRNAs were also found to be synthesized by an in vitro transcription system with the native VSV RNP.


2005 ◽  
Vol 79 (12) ◽  
pp. 7327-7337 ◽  
Author(s):  
Valery Z. Grdzelishvili ◽  
Sherin Smallwood ◽  
Dallas Tower ◽  
Richard L. Hall ◽  
D. Margaret Hunt ◽  
...  

ABSTRACT The vesicular stomatitis virus (VSV) RNA polymerase synthesizes viral mRNAs with 5′-cap structures methylated at the guanine-N7 and 2′-O-adenosine positions (7mGpppAm). Previously, our laboratory showed that a VSV host range (hr) and temperature-sensitive (ts) mutant, hr1, had a complete defect in mRNA cap methylation and that the wild-type L protein could complement the hr1 defect in vitro. Here, we sequenced the L, P, and N genes of mutant hr1 and found only two amino acid substitutions, both residing in the L-polymerase protein, which differentiate hr1 from its wild-type parent. These mutations (N505D and D1671V) were introduced separately and together into the L gene, and their effects on VSV in vitro transcription and in vivo chloramphenicol acetyltransferase minigenome replication were studied under conditions that are permissive and nonpermissive for hr1. Neither L mutation significantly affected viral RNA synthesis at 34°C in permissive (BHK) and nonpermissive (HEp-2) cells, but D1671V reduced in vitro transcription and genome replication by about 50% at 40°C in both cell lines. Recombinant VSV bearing each mutation were isolated, and the hr and ts phenotypes in infected cells were the result of a single D1671V substitution in the L protein. While the mutations did not significantly affect mRNA synthesis by purified viruses, 5′-cap analyses of product mRNAs clearly demonstrated that the D1671V mutation abrogated all methyltransferase activity. Sequence analysis suggests that an aspartic acid at amino acid 1671 is a critical residue within a putative conserved S-adenosyl-l-methionine-binding domain of the L protein.


1982 ◽  
Vol 43 (1) ◽  
pp. 166-173 ◽  
Author(s):  
Manfred Schubert ◽  
George G. Harmison ◽  
Judy Sprague ◽  
Cindra S. Condra ◽  
Robert A. Lazzarini

Sign in / Sign up

Export Citation Format

Share Document