Rate constants and solvent isotope effects in the cleavage of picolyl- and (quinolylmethyl)-trimethylsilanes by sodium methoxide in methanol

1979 ◽  
Vol 177 (1) ◽  
pp. 129-136 ◽  
Author(s):  
Giancarlo Seconi ◽  
Colin Eaborn ◽  
Alfred Fischer
2021 ◽  
Vol 22 (14) ◽  
pp. 7394
Author(s):  
Kyoung Ho Park ◽  
Mi Hye Seong ◽  
Jin Burm Kyong ◽  
Dennis N. Kevill

A study was carried out on the solvolysis of 1-adamantyl chlorothioformate (1-AdSCOCl, 1) in hydroxylic solvents. The rate constants of the solvolysis of 1 were well correlated using the Grunwald–Winstein equation in all of the 20 solvents (R = 0.985). The solvolyses of 1 were analyzed as the following two competing reactions: the solvolysis ionization pathway through the intermediate (1-AdSCO)+ (carboxylium ion) stabilized by the loss of chloride ions due to nucleophilic solvation and the solvolysis–decomposition pathway through the intermediate 1-Ad+Cl− ion pairs (carbocation) with the loss of carbonyl sulfide. In addition, the rate constants (kexp) for the solvolysis of 1 were separated into k1-Ad+Cl− and k1-AdSCO+Cl− through a product study and applied to the Grunwald–Winstein equation to obtain the sensitivity (m-value) to change in solvent ionizing power. For binary hydroxylic solvents, the selectivities (S) for the formation of solvolysis products were very similar to those of the 1-adamantyl derivatives discussed previously. The kinetic solvent isotope effects (KSIEs), salt effects and activation parameters for the solvolyses of 1 were also determined. These observations are compared with those previously reported for the solvolyses of 1-adamantyl chloroformate (1-AdOCOCl, 2). The reasons for change in reaction channels are discussed in terms of the gas-phase stabilities of acylium ions calculated using Gaussian 03.


2000 ◽  
Vol 78 (4) ◽  
pp. 508-515
Author(s):  
John Andraos ◽  
A Jerry Kresge

Rates of hydration of a number of ketenes were measured in neutral and basic solution using flash photolytic techniques, and rate constants for their uncatalyzed, kuc, and hydroxide-ion catalyzed, kHO, reactions were determined. These results, plus additional data from the literature, were found to provide the remarkably good correlation log kuc = -3.21 + 1.14 log kHO, which spans 10 orders of magnitude in reactivity and includes 31 ketenes. This good correlation implies that uncatalyzed and hydroxide-ion catalyzed ketene hydraton occur by similar reaction mechanisms, which for the hydroxide-ion catalyzed process is known to involve nucleophilic attack on the carbonyl carbon atom of the ketene. Rate constants for phenylhydroxyketene, on the other hand, do not fit this correlation, which suggests that the mechanistic assignment upon which these rate constants are based may not be correct. Solvent isotope effects on these uncatalyzed ketene hydrations are weak; most are less than kH/kD = 2. It is argued that these isotope effects are largely, if not entirely, secondary in nature and that they are consistent with both a reaction mechanism in which nucleophlic attack of a single water molecule on the ketene carbonyl carbon atom produces a zwitterionic intermediate and also a mechanism that avoids this intermediate by passing through a cyclic transition state involving several water molecules.Key words: ketene hydration, rate correlation, nucleophilic attack, solvent isotope effects, phenylhydroxyketene.


Sign in / Sign up

Export Citation Format

Share Document