Relationships between the effective properties of transversely isotropic piezoelectric composites

1992 ◽  
Vol 40 (2) ◽  
pp. 473-479 ◽  
Author(s):  
K. Schulgasser
2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ri-Song Qin ◽  
Yi Xiao ◽  
Haitian Lan

The prediction of the overall effective properties of fibre-reinforced piezocomposites has drawn much interest from investigators recently. In this work, an algorithm used in two-dimensional (2D) analysis for calculating transversely isotropic material properties is developed. Since the finite element (FE) meshing patterns on the opposite areas are the same, constraint equations can be applied directly to generate appropriate load. The numerical results derived using this model have found a good agreement with those in the literature. The 2D algorithm is then modified and improved in such a way that it is valid for three-dimensional (3D) analysis in the case of random distributed shorts and inclusions. Linear interpolation of displacement field is employed to establish constraint equations of nodal displacements between two adjacent elements.


1994 ◽  
Vol 116 (3) ◽  
pp. 260-267 ◽  
Author(s):  
Y. Benveniste

This paper consists of two parts: (a) a concise summary and discussion is given of the recent contributions of the author in the micromechanics of piezoelectric composites. The underlying theme here is the derivation of exact connections for the local fields and effective moduli of heterogeneous piezoelectric solids. Composites of arbitrary phase geometry as well as fibrous systems are considered. (b) New results are presented on the effective behavior of fibrous piezoelectric systems. Fibrous composites with transversely isotropic constituents and cylindrical microgeometry are considered. The exact connections of the author (Benveniste (1993), Proc. R. Soc., Series A, Vol. 441, pp. 59-81) are extended to include the most generally possible overall symmetry of the composite aggregate. The other category of the new findings concerns exact expressions for the effective thermal terms of fibrous systems which possess the same shear modulus GT.


Piezoelectric fibrous composites of two, three and four phases are considered. The phase boundaries are cylindrical but otherwise the microgeometry is totally arbitrary. The constituents are transversely isotropic, and exhibit pyroelectricity. Exact relations are derived between the local fields arising under a uniform electromechanical loading and a uniform temperature change in the piezoelectric composite. For given overall material symmetry, exact connections are obtained among the effective elastic, piezoelectric and dielectric constants of two- and three- phase systems. It is also shown that the effective thermal stress and pyroelectric coefficients can be expressed in terms of the effective elastic, piezoelectric, dielectric constants and constituent properties in two-, three- and four-phase composites.


Sign in / Sign up

Export Citation Format

Share Document