A model for the spatio-temporal organization of DNA replication in mammalian cells

1987 ◽  
Vol 129 (1) ◽  
pp. 91-115 ◽  
Author(s):  
Manabu Takahashi
2019 ◽  
Author(s):  
Razie Yousefi ◽  
Maga Rowicka

AbstractEukaryotic DNA replication is elaborately orchestrated to duplicate the genome timely and faithfully. Replication initiates at multiple origins from which replication forks emanate and travel bi-directionally. The complex spatio-temporal regulation of DNA replication remains incompletely understood. To study it, computational models of DNA replication have been developed in S. cerevisiae. However, in spite of the experimental evidence of replication speed stochasticity, all models assumed that replication fork speed is constant or varies only with genomic coordinates. Here, we present the first model of DNA replication assuming stochastic speed of the replication fork. Utilizing data from both wild-type and hydroxyurea-treated yeast cells, we show that our model is more accurate than models assuming constant fork speed and reconstructs dynamics of DNA replication faithfully starting both from population-wide data and data reflecting fork movement in individual cells. Completion of replication in a timely manner is a challenge due to its stochasticity; we propose an empirically derived modification to replication speed based on the distance to the approaching fork, which promotes timely completion of replication. In summary, our work discovers a key role that stochasticity of the fork speed plays in the dynamics of DNA replication. We show that without including stochasticity of fork speed it is not possible to accurately reconstruct movement of individual replication forks, measured by DNA combing.Author summaryDNA replication in eukaryotes starts from multiple sites termed replication origins. Replication timing at individual sites is stochastic, but reproducible population-wide. Complex and not yet completely understood mechanisms ensure that genome is replicated exactly once and that replication is finished in time. This complex spatio-temporal organization of DNA replication makes computational modeling a useful tool to study replication mechanisms. For simplicity, all previous models assumed constant replication fork speed. Here, we show that such models are incapable of accurately reconstructing distances travelled by individual replication forks. Therefore, we propose a model with a stochastic replication fork speed. We show that such model reproduces faithfully distances travelled by individual replication forks. Moreover, our model is simpler than previous model and thus avoids over-learning (fitting noise). We also discover how replication speed may be attuned to timely complete replication. We propose that fork speed exponentially increases with diminishing distance to the approaching fork, which we show promotes timely completion of replication. Such speed up can be e.g. explained by a synergy effect of chromatin unwinding by both forks. Our model can be used to simulate phenomena beyond replication, e.g. DNA double-strand breaks resulting from broken replication forks.


1979 ◽  
Vol 81 (3) ◽  
pp. 692-697 ◽  
Author(s):  
B R Jasny ◽  
I Tamm

The extent of coordinate control over the multiple initiation events in DNA replication has been investigated in three mammalian cell lines by DNA fiber autoradiography. Quantitative estimates have been obtained of the degree of synchrony among initiations occurring on stretches of DNA. Synchrony decreases markedly with increasing distance between initiation sites in MDBK (bovine) and L929 (mouse) cells, but only slightly in muntjac cells. Possible control mechanisms for the initiation process are discussed.


2002 ◽  
Vol 283 (4) ◽  
pp. C1009-C1024 ◽  
Author(s):  
Nawfal W. Istfan ◽  
Zhi-Yi Chen ◽  
Sybille Rex

Fish oils (FOs) have been noted to reduce growth and proliferation of certain tumor cells, effects usually attributed to the content of polyunsaturated fatty acids of the n–3 family, which are thought to modulate cellular signaling pathways. We investigated the influence of FO on cell cycle kinetics of cultured Chinese hamster ovary cells. Exponentially growing cells were labeled with 5-bromo-2′-deoxyuridine (BrdU) and analyzed by flow cytometry after 5-day treatment with exogenous fat. Bivariate BrdU-DNA analysis indicated slower progression through S phase and thus longer S phase duration time in FO- but not corn oil-treated or control cells. We hypothesize that FO treatment might interfere with spatial/temporal organization of replication origins. Therefore, we mapped the well-characterized replication origin ori-β downstream of the dihydrofolate reductase gene with the nascent strand length assay. Three DNA marker segments with known positions relative to this origin were amplified by PCR. By quantitatively assessing DNA length of the fragments in all fractions containing these markers, the location of ori-β was established. In control or corn oil-treated cells, the location of ori-β was consistent with previous studies. However, in FO-treated cells, DNA replication appears to start from a new site located farther upstream from ori-β, suggesting a different replication initiation pattern. This study suggests novel mechanism(s) by which fats affect cell proliferation and DNA replication in mammalian cells.


2020 ◽  
Vol 48 (22) ◽  
pp. 12751-12777
Author(s):  
Cathia Rausch ◽  
Patrick Weber ◽  
Paulina Prorok ◽  
David Hörl ◽  
Andreas Maiser ◽  
...  

Abstract To ensure error-free duplication of all (epi)genetic information once per cell cycle, DNA replication follows a cell type and developmental stage specific spatio-temporal program. Here, we analyze the spatio-temporal DNA replication progression in (un)differentiated mouse embryonic stem (mES) cells. Whereas telomeres replicate throughout S-phase, we observe mid S-phase replication of (peri)centromeric heterochromatin in mES cells, which switches to late S-phase replication upon differentiation. This replication timing reversal correlates with and depends on an increase in condensation and a decrease in acetylation of chromatin. We further find synchronous duplication of the Y chromosome, marking the end of S-phase, irrespectively of the pluripotency state. Using a combination of single-molecule and super-resolution microscopy, we measure molecular properties of the mES cell replicon, the number of replication foci active in parallel and their spatial clustering. We conclude that each replication nanofocus in mES cells corresponds to an individual replicon, with up to one quarter representing unidirectional forks. Furthermore, with molecular combing and genome-wide origin mapping analyses, we find that mES cells activate twice as many origins spaced at half the distance than somatic cells. Altogether, our results highlight fundamental developmental differences on progression of genome replication and origin activation in pluripotent cells.


2020 ◽  
Vol 1861 (1) ◽  
pp. 148091 ◽  
Author(s):  
Kirill Salewskij ◽  
Bettina Rieger ◽  
Frances Hager ◽  
Tasnim Arroum ◽  
Patrick Duwe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document