Fish oil slows S phase progression and may cause upstream shift of DHFR replication origin ori-β in CHO cells

2002 ◽  
Vol 283 (4) ◽  
pp. C1009-C1024 ◽  
Author(s):  
Nawfal W. Istfan ◽  
Zhi-Yi Chen ◽  
Sybille Rex

Fish oils (FOs) have been noted to reduce growth and proliferation of certain tumor cells, effects usually attributed to the content of polyunsaturated fatty acids of the n–3 family, which are thought to modulate cellular signaling pathways. We investigated the influence of FO on cell cycle kinetics of cultured Chinese hamster ovary cells. Exponentially growing cells were labeled with 5-bromo-2′-deoxyuridine (BrdU) and analyzed by flow cytometry after 5-day treatment with exogenous fat. Bivariate BrdU-DNA analysis indicated slower progression through S phase and thus longer S phase duration time in FO- but not corn oil-treated or control cells. We hypothesize that FO treatment might interfere with spatial/temporal organization of replication origins. Therefore, we mapped the well-characterized replication origin ori-β downstream of the dihydrofolate reductase gene with the nascent strand length assay. Three DNA marker segments with known positions relative to this origin were amplified by PCR. By quantitatively assessing DNA length of the fragments in all fractions containing these markers, the location of ori-β was established. In control or corn oil-treated cells, the location of ori-β was consistent with previous studies. However, in FO-treated cells, DNA replication appears to start from a new site located farther upstream from ori-β, suggesting a different replication initiation pattern. This study suggests novel mechanism(s) by which fats affect cell proliferation and DNA replication in mammalian cells.

2021 ◽  
Author(s):  
Dashiell J Massey ◽  
Amnon Koren

DNA replication occurs throughout the S phase of the cell cycle, initiating from replication origin loci that fire at different times. Debate remains about whether origins are a fixed set of loci used across all cells or a loose agglomeration of potential origins used stochastically in individual cells, and about how consistent their firing time during S phase is across cells. Here, we develop an approach for profiling DNA replication in single human cells and apply it to 2,305 replicating cells spanning the entire S phase. The resolution and scale of the data enabled us to specifically analyze initiation sites and show that these sites have confined locations that are consistently used among individual cells. Further, we find that initiation sites are activated in a similar, albeit not fixed, order across cells. Taken together, our results suggest that replication timing variability is constrained both spatially and temporally, and that the degree of variation is consistent across human cell lines.


1992 ◽  
Vol 12 (10) ◽  
pp. 4375-4383
Author(s):  
P J Mosca ◽  
P A Dijkwel ◽  
J L Hamlin

An understanding of replication initiation in mammalian cells has been hampered by the lack of mutations and/or inhibitors that arrest cells just prior to entry into the S period. The plant amino acid mimosine has recently been suggested to inhibit cells at a regulatory step in late G1. We have examined the effects of mimosine on cell cycle traverse in the mimosine [corrected]-resistant CHO cell line CHOC 400. When administered to cultures for 14 h after reversal of a G0 block, the drug appears to arrest the population at the G1/S boundary, and upon its removal cells enter the S phase in a synchronous wave. However, when methotrexate is administered to an actively dividing asynchronous culture, cells are arrested not only at the G1/S interface but also in early and middle S phase. Most interestingly, two-dimensional gel analysis of replication intermediates in the initiation locus of the amplified dihydrofolate reductase domain suggests that mimosine may actually inhibit initiation. Thus, this drug represents a new class of inhibitors that may open a window on regulatory events occurring at individual origins of replication.


1992 ◽  
Vol 12 (10) ◽  
pp. 4375-4383 ◽  
Author(s):  
P J Mosca ◽  
P A Dijkwel ◽  
J L Hamlin

An understanding of replication initiation in mammalian cells has been hampered by the lack of mutations and/or inhibitors that arrest cells just prior to entry into the S period. The plant amino acid mimosine has recently been suggested to inhibit cells at a regulatory step in late G1. We have examined the effects of mimosine on cell cycle traverse in the mimosine [corrected]-resistant CHO cell line CHOC 400. When administered to cultures for 14 h after reversal of a G0 block, the drug appears to arrest the population at the G1/S boundary, and upon its removal cells enter the S phase in a synchronous wave. However, when methotrexate is administered to an actively dividing asynchronous culture, cells are arrested not only at the G1/S interface but also in early and middle S phase. Most interestingly, two-dimensional gel analysis of replication intermediates in the initiation locus of the amplified dihydrofolate reductase domain suggests that mimosine may actually inhibit initiation. Thus, this drug represents a new class of inhibitors that may open a window on regulatory events occurring at individual origins of replication.


2007 ◽  
Vol 27 (17) ◽  
pp. 6053-6067 ◽  
Author(s):  
Erin Olson ◽  
Christian J. Nievera ◽  
Enbo Liu ◽  
Alan Yueh-Luen Lee ◽  
Longchuan Chen ◽  
...  

ABSTRACT The Mre11/Rad50/Nbs1 complex (MRN) plays an essential role in the S-phase checkpoint. Cells derived from patients with Nijmegen breakage syndrome and ataxia telangiectasia-like disorder undergo radioresistant DNA synthesis (RDS), failing to suppress DNA replication in response to ionizing radiation (IR). How MRN affects DNA replication to control the S-phase checkpoint, however, remains unclear. We demonstrate that MRN directly interacts with replication protein A (RPA) in unperturbed cells and that the interaction is regulated by cyclin-dependent kinases. We also show that this interaction is needed for MRN to correctly localize to replication centers. Abolishing the interaction of Mre11 with RPA leads to pronounced RDS without affecting phosphorylation of Nbs1 or SMC1 following IR. Moreover, MRN is recruited to sites at or adjacent to replication origins by RPA and acts there to inhibit new origin firing upon IR. These studies suggest a direct role of MRN at origin-proximal sites to control DNA replication initiation in response to DNA damage, thereby providing an important mechanism underlying the intra-S-phase checkpoint in mammalian cells.


1990 ◽  
Vol 10 (9) ◽  
pp. 4685-4689 ◽  
Author(s):  
L T Vassilev ◽  
W C Burhans ◽  
M L DePamphilis

A general method for determining the physical location of an origin of bidirectional DNA replication has been developed recently and shown to be capable of correctly identifying the simian virus 40 origin of replication (L. Vassilev and E. M. Johnson, Nucleic Acids Res. 17:7693-7705, 1989). The advantage of this method over others previously reported is that it avoids the use of metabolic inhibitors, the requirement for cell synchronization, and the need for multiple copies of the origin sequence. Application of this method to exponentially growing Chinese hamster ovary cells containing the nonamplified, single-copy dihydrofolate reductase gene locus revealed that DNA replication begins bidirectionally in an initiation zone approximately 2.5 kilobases long centered about 17 kilobases downstream of the DHFR gene, coinciding with previously described early replicating sequences. These results demonstrate the utility of this mapping protocol for identifying cellular origins of replication and suggest that the same cellular origin is used in both the normal and the amplified DHFR locus.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2063 ◽  
Author(s):  
Olivier Hyrien

DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.


1990 ◽  
Vol 10 (9) ◽  
pp. 4685-4689
Author(s):  
L T Vassilev ◽  
W C Burhans ◽  
M L DePamphilis

A general method for determining the physical location of an origin of bidirectional DNA replication has been developed recently and shown to be capable of correctly identifying the simian virus 40 origin of replication (L. Vassilev and E. M. Johnson, Nucleic Acids Res. 17:7693-7705, 1989). The advantage of this method over others previously reported is that it avoids the use of metabolic inhibitors, the requirement for cell synchronization, and the need for multiple copies of the origin sequence. Application of this method to exponentially growing Chinese hamster ovary cells containing the nonamplified, single-copy dihydrofolate reductase gene locus revealed that DNA replication begins bidirectionally in an initiation zone approximately 2.5 kilobases long centered about 17 kilobases downstream of the DHFR gene, coinciding with previously described early replicating sequences. These results demonstrate the utility of this mapping protocol for identifying cellular origins of replication and suggest that the same cellular origin is used in both the normal and the amplified DHFR locus.


1976 ◽  
Vol 69 (3) ◽  
pp. 732-736 ◽  
Author(s):  
D Billen ◽  
A C Olson

We have developed a method for permeabilizing CHO cells to nucleotides under conditions which allow most cells to remain viable. Permeabilized cells can carry out ATP-dependent, semiconservative synthesis of DNA. The data are consistent with the continuation of DNA synthesis in those cells in S phase at the time of treatment, possibly limited to completion of replicon synthesis without new initiations.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yongzheng Li ◽  
Boxin Xue ◽  
Mengling Zhang ◽  
Liwei Zhang ◽  
Yingping Hou ◽  
...  

Abstract Background Metazoan cells only utilize a small subset of the potential DNA replication origins to duplicate the whole genome in each cell cycle. Origin choice is linked to cell growth, differentiation, and replication stress. Although various genetic and epigenetic signatures have been linked to the replication efficiency of origins, there is no consensus on how the selection of origins is determined. Results We apply dual-color stochastic optical reconstruction microscopy (STORM) super-resolution imaging to map the spatial distribution of origins within individual topologically associating domains (TADs). We find that multiple replication origins initiate separately at the spatial boundary of a TAD at the beginning of the S phase. Intriguingly, while both high-efficiency and low-efficiency origins are distributed homogeneously in the TAD during the G1 phase, high-efficiency origins relocate to the TAD periphery before the S phase. Origin relocalization is dependent on both transcription and CTCF-mediated chromatin structure. Further, we observe that the replication machinery protein PCNA forms immobile clusters around TADs at the G1/S transition, explaining why origins at the TAD periphery are preferentially fired. Conclusion Our work reveals a new origin selection mechanism that the replication efficiency of origins is determined by their physical distribution in the chromatin domain, which undergoes a transcription-dependent structural re-organization process. Our model explains the complex links between replication origin efficiency and many genetic and epigenetic signatures that mark active transcription. The coordination between DNA replication, transcription, and chromatin organization inside individual TADs also provides new insights into the biological functions of sub-domain chromatin structural dynamics.


2021 ◽  
Vol 22 (10) ◽  
pp. 5195
Author(s):  
Hui Zhang

In eukaryotic cells, DNA replication licensing is precisely regulated to ensure that the initiation of genomic DNA replication in S phase occurs once and only once for each mitotic cell division. A key regulatory mechanism by which DNA re-replication is suppressed is the S phase-dependent proteolysis of Cdt1, an essential replication protein for licensing DNA replication origins by loading the Mcm2-7 replication helicase for DNA duplication in S phase. Cdt1 degradation is mediated by CRL4Cdt2 ubiquitin E3 ligase, which further requires Cdt1 binding to proliferating cell nuclear antigen (PCNA) through a PIP box domain in Cdt1 during DNA synthesis. Recent studies found that Cdt2, the specific subunit of CRL4Cdt2 ubiquitin E3 ligase that targets Cdt1 for degradation, also contains an evolutionarily conserved PIP box-like domain that mediates the interaction with PCNA. These findings suggest that the initiation and elongation of DNA replication or DNA damage-induced repair synthesis provide a novel mechanism by which Cdt1 and CRL4Cdt2 are both recruited onto the trimeric PCNA clamp encircling the replicating DNA strands to promote the interaction between Cdt1 and CRL4Cdt2. The proximity of PCNA-bound Cdt1 to CRL4Cdt2 facilitates the destruction of Cdt1 in response to DNA damage or after DNA replication initiation to prevent DNA re-replication in the cell cycle. CRL4Cdt2 ubiquitin E3 ligase may also regulate the degradation of other PIP box-containing proteins, such as CDK inhibitor p21 and histone methylase Set8, to regulate DNA replication licensing, cell cycle progression, DNA repair, and genome stability by directly interacting with PCNA during DNA replication and repair synthesis.


Sign in / Sign up

Export Citation Format

Share Document