scholarly journals 174: Effects of ICM-I-136, a Novel Sodium (NA) Channel Blocker, on Detrusor Overactivity and Sodium Currents from Bladder Afferents

2006 ◽  
Vol 175 (4S) ◽  
pp. 56-56
Author(s):  
Hwancheol Son ◽  
Adam P. Klausner ◽  
Sang-Kuk Yang ◽  
Seema Sharma ◽  
Timothy W. Batts ◽  
...  
2006 ◽  
Vol 175 (4S) ◽  
pp. 52-52
Author(s):  
Seema Sharma ◽  
Adam P. Klausner ◽  
Sang-Kuk Yang ◽  
Hwancheol Son ◽  
Jeremy B. Tuttle ◽  
...  

1986 ◽  
Vol 250 (4) ◽  
pp. H612-H619 ◽  
Author(s):  
R. S. Moreland ◽  
T. C. Major ◽  
R. C. Webb

This study characterizes isometric force development in response to ouabain and K+-free solution in isolated aortic strips from spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats. SHR aortas were more sensitive to ouabain than those from WKY (threshold: SHR, 3.1 X 10(-5) M; WKY, 25.6 X 10(-5) M), and force development in response to 10(-3) M ouabain was greater in SHR (SHR, 586 +/- 51 mg; WKY, 245 +/- 24 mg). Monensin, a Na+ ionophore, potentiated contractile responses to ouabain, whereas amiloride, a Na+ channel blocker, and low Na+ solutions depressed contractile responses to ouabain. Contractile responses of SHR aortic strips to K+-free solution were faster than those of WKY aortic strips [time to half-maximal response (t1/2): SHR, 24 +/- 5 min; WKY, 47 +/- 4 min]. Maximal force development by aortic strips from SHR in response to K+-free solution was not different from that of WKY aortic strips (SHR, 808 +/- 34 mg; WKY, 750 +/- 37 mg). Monensin (10(-5) M) increased the rate of force development to K+-free solution to a greater extent in WKY aortic strips than in those from SHR (t1/2: SHR, 3 +/- 1 min; WKY, 4 +/- 2 min). Amiloride and low Na+ solution depressed contractile responses to K+-free solution in both SHR and WKY aortic strips. These observations demonstrate that SHR aortas are more responsive to ouabain and K+-free solution compared with WKY aortas. Contractile responses to ouabain and K+-free solution were sensitive to experimental interventions that alter transmembrane Na+ movements.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 254 (4) ◽  
pp. E476-E481 ◽  
Author(s):  
M. Kato ◽  
M. A. Hattori ◽  
M. Suzuki

To further clarify the ionic mechanism of the action of growth hormone (GH)-releasing factor (hGRF) on GH secretion, the involvement of extracellular Na+ was studied in perifused dispersed rat anterior pituitary cells. Replacing extracellular Na+ with mannitol or tris(hydroxymethyl)aminomethane (Tris+) suppressed hGRF- and dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP)-induced GH secretion. The peak responses to a 2-min application of 1 nM hGRF were 165.0 +/- 5.6 ng/ml (normal medium, mean +/- SE), 21.2 +/- 1.4 ng/ml (Na+-free, mannitol medium), and 18.0 +/- 1.7 ng/ml (Na+-free, Tris+ medium). GH secretion induced by DBcAMP was also suppressed by Na+ replacement to less than 50% of that in normal medium. However, either 15 or 30 mM KCl-stimulated GH secretion was not markedly affected by replacement of Na+ with either compound. Tetrodotoxin, a voltage-sensitive Na+ channel blocker, had no effect on either hGRF- or excess K+-induced GH secretion. cAMP production by hGRF was not greatly affected by replacing extracellular Na+. Thus extracellular Na+ plays an important role in hGRF-induced GH secretion, especially in the process after cAMP production. The involvement of cAMP-sensitive Na+ channels in hGRF-stimulated GH secretion is discussed.


1994 ◽  
Vol 266 (2) ◽  
pp. F218-F226 ◽  
Author(s):  
R. Fernandez ◽  
M. J. Lopes ◽  
R. F. de Lira ◽  
W. F. Dantas ◽  
E. J. Cragoe Junior ◽  
...  

The cellular mechanism of luminal acidification (bicarbonate reabsorption) was studied in cortical distal tubules of rat kidney. The stopped-flow microperfusion technique was applied to early distal (ED) and late distal (LD) segments, perfused with bicarbonate Ringer solution to which specific inhibitors were added, to measure bicarbonate reabsorption [HCO3 flux (JHCO3)]. pH and transepithelial potential difference (Vt) were recorded by double-barreled H+ exchange resin/reference (1 M KCl) electrodes. Amiloride increased stationary pH and reduced Vt in both early and late segments. Hexamethylene-amiloride (HMA), a specific Na(+)-H+ exchange blocker, reduced JHCO3 in both segments (ED by 43.6 and LD by 40.3%) without affecting Vt. Benzamil, an Na(+)-channel blocker, reduced Vt by 75.9 in ED and 74.9% in LD but had no significant effect on acidification in both segments. The specific inhibitor of H(+)-ATPase, bafilomycin A1, inhibited LD JHCO3 at a concentration of 2 x 10(-7) M by 49%, but ED was inhibited by 24% only at 2 x 10(-6) M. Sch-28080, an inhibitor of gastric H(+)-K(+)-ATPase, reduced JHCO3 by 35% in LD of K(+)-depleted rats but not in control rats and had no effect on ED. These data indicate that, in ED, bicarbonate reabsorption is mediated mostly by Na(+)-H+ exchange. In LD, there is evidence for contribution of Na(+)-H+ exchange, vacuolar H(+)-ATPase, and H(+)-K(+)-ATPase (in K(+)-depleted rats) to bicarbonate reabsorption.


2003 ◽  
Vol 42 (3) ◽  
pp. 410-418 ◽  
Author(s):  
Long-Mei Wu ◽  
Minako Orikabe ◽  
Yuji Hirano ◽  
Seiko Kawano ◽  
Masayasu Hiraoka

2004 ◽  
Vol 19 (3) ◽  
pp. 137-143 ◽  
Author(s):  
Mikio Hiramatsu ◽  
Long-Mei Wu ◽  
Yuji Hirano ◽  
Seiko Kawano ◽  
Tetsushi Furukawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document