113: Correlation of Systemic Cytokine Production with Seminal Oxidative Stress and Treatment Response in Chronic Prostatitis/Chronic Pelvic Pain Syndrome

2004 ◽  
Vol 171 (4S) ◽  
pp. 30-30
Author(s):  
Daniel Shoskes ◽  
Chantale Lapierre
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Nikola Šutulović ◽  
Željko Grubač ◽  
Sonja Šuvakov ◽  
Djurdja Jerotić ◽  
Nela Puškaš ◽  
...  

Mechanisms of the brain-related comorbidities in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) are still largely unknown, although CP/CPPS is one of the major urological problems in middle-aged men, while these neuropsychological incapacities considerably diminish life quality. The objectives of this study were to assess behavioral patterns in rats with CP/CPPS and to determine whether these patterns depend on alterations in the brain oxidative stress, corticosterone, and hippocampal parvalbumin-positive (PV+) interneurons. Adult male Wistar albino rats from CP/CPPS (intraprostatic injection of 3% λ-carrageenan, day 0) and sham (0.9% NaCl) groups were subjected to pain and anxiety-like behavior tests (days 2, 3, and 7). Afterwards, rats were sacrificed and biochemical and immunohistochemical analyses were performed. Scrotal allodynia and prostatitis were proven in CP/CPPS, but not in sham rats. Ethological tests (open field, elevated plus maze, and light/dark tests) revealed significantly increased anxiety-like behavior in rats with CP/CPPS comparing to their sham-operated mates starting from day 3, and there were significant intercorrelations among parameters of these tests. Increased oxidative stress in the hippocampus, thalamus, and cerebral cortex, as well as increased serum corticosterone levels and decreased number of hippocampal PV+ neurons, was shown in CP/CPPS rats, compared to sham rats. Increased anxiety-like behavior in CP/CPPS rats was significantly correlated with these brain biochemical and hippocampal immunohistochemical alterations. Therefore, the potential mechanisms of observed behavioral alterations in CP/CPPS rats could be the result of an interplay between increased brain oxidative stress, elevated serum corticosterone level, and loss of hippocampal PV+ interneurons.


2007 ◽  
Vol 177 (4S) ◽  
pp. 33-34
Author(s):  
Daniel A. Shoskes ◽  
Chun-Te Lee ◽  
Donel Murphy ◽  
John C. Kefer ◽  
Hadley M. Wood

2007 ◽  
Vol 177 (4S) ◽  
pp. 31-31
Author(s):  
J. Curtis Nickel ◽  
Dean Tripp ◽  
Shannon Chuai ◽  
Mark S. Litwin ◽  
Mary McNaughton-Collins

Sign in / Sign up

Export Citation Format

Share Document