brain oxidative stress
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 64)

H-INDEX

34
(FIVE YEARS 6)

Author(s):  
Elham Hakimizadeh ◽  
Mohammad Yassin Zamanian ◽  
Vitaliy Viktorovich Borisov ◽  
Lydia Giménez‐Llort ◽  
Vahid Ehsani ◽  
...  

2021 ◽  
Vol 10 ◽  
pp. e2218
Author(s):  
Bahareh Eghbal ◽  
Ava Soltani Hekmat ◽  
Seyed Amin Kouhpayeh ◽  
Ali Ghanbariasad ◽  
Kazem Javanmardi ◽  
...  

Background: Electroconvulsive Therapy (ECT) as a well-established and effective therapeutic approach for the treatment of various psychiatric disorders is an excellent option to treat the major depressive disorder (MDD). The goal of this experimental study was to determine the possible sides effects of electroconvulsive shock (ECS) and duloxetine, a serotonin-norepinephrine Reuptake Inhibitors (SNRIs), and evaluate the safety of this therapeutic approach on behavioral factors, cardiovascular function, and brain oxidative stress markers on mice. Materials and Methods: Animals were divided into different groups receiving either ECS or different doses (10, 20, 40, 80, or 120 mg) of duloxetine alone or together. We evaluated the behavioral factors associated with administration of ECS with or without duloxetine. In addition, we monitored the ECGs (electrocardiogram) of animals prior to and after the experiment and also evaluated the oxidative stress markers including TAC, MDA, and GSH mice’s brains. Results: We did not detect any significant differences in terms of heart rate, RR interval, PR interval, QT, or corrected QT (QTc) between groups that received different doses of duloxetine in combination with ECS compare to the control group. Our findings suggest that while administration of ECS solely increased the oxidative stress markers and decreased the antioxidant capacity of the brain, a combination of duloxetine and ECS at certain doses alleviates the oxidative stress condition and increases the antioxidant capacity of the brain. Conclusion: Overall, this study suggests that the combination of ECS and duloxetine is safe and considerable for further studies on human subjects.


Author(s):  
Camilla M Hoyos ◽  
Stephen Colagiuri ◽  
Ashlee Turner ◽  
Catriona Ireland ◽  
Sharon L Naismith ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7085
Author(s):  
Luminita Capatina ◽  
Edoardo Marco Napoli ◽  
Giuseppe Ruberto ◽  
Lucian Hritcu

Origanum vulgare ssp. hirtum has been used as medicinal herbs promoting antioxidant, anti-inflammatory, antimicrobial, and neuroprotective activities. We investigated the protective effects and the mechanism of O. vulgare ssp. hirtum essential oil (OEO) on cognitive impairment and brain oxidative stress in a scopolamine (Sco)-induced zebrafish (Danio rerio) model of cognitive impairment. Our results show that exposure to Sco (100 µM) leads to anxiety, spatial memory, and response to novelty dysfunctions, whereas the administration of OEO (25, 150, and 300 µL/L, once daily for 13 days) reduced anxiety-like behavior and improved cognitive ability, which was confirmed by behavioral tests, such as the novel tank-diving test (NTT), Y-maze test, and novel object recognition test (NOR) in zebrafish. Additionally, Sco-induced brain oxidative stress and increasing of acetylcholinesterase (AChE) activity were attenuated by the administration of OEO. The gas chromatography–mass spectrometry (GC-MS) analyses were used to elucidate the OEO composition, comprising thymol (38.82%), p-cymene (20.28%), and γ-terpinene (19.58%) as the main identified components. These findings suggest the ability of OEO to revert the Sco-induced cognitive deficits by restoring the cholinergic system activity and brain antioxidant status. Thus, OEO could be used as perspective sources of bioactive compounds, displaying valuable biological activities, with potential pharmaceutical applications.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wei Cai ◽  
Qi Wu ◽  
Zhi Zhong Yan ◽  
Wei-Zhen He ◽  
Xiao-Ming Zhou ◽  
...  

Subarachnoid hemorrhage (SAH) is a fatal disease. Within 72 h of SAH, the intracranial blood-brain barrier (BBB) is destroyed, and the nerve cells have responses such as autophagy, apoptosis, and oxidative stress. Antioxidation is an essential treatment of SAH. Astaxanthin (ATX) induces cells’ antioxidant behaviors by regulating related signal pathways to reduce the damage of brain oxidative stress, inflammation, and apoptosis. Because of its easy degradability and low bioavailability, ATX is mainly encapsulated with stimulus-responsive nanocarriers to improve its stability, making it rapidly release in the brain and efficiently enter the lesion tissue. In this study, the ultrasonic cavitation agent perfluorocarbon (PFH), ATX, and fluorescent dye IR780 were loaded with polydopamine (PDA) to prepare a US triggered release nanoparticles (AUT NPs). The core-shell structure of AUT NPs formed a physical barrier to improve the bioavailability of ATX. AUT NPs have high ATX loading capacity and US responsiveness. The experimental results show that the AUT NPs have high stability in the physiological environment. Both US and pH stimuli can trigger the release. Under US, PFH breaks through the rigid shell. The structure of AUT NPs is destroyed in situ, releasing the loaded drugs into neuronal cells to realize the antioxidant and antiapoptotic effects. The in vivo experiment results show that the AUT NPs have good biosafety. They release the drugs in the brain under stimuli. The in vivo treatment results also show that AUT NPs have an excellent therapeutic effect. This approach presents an experimental basis for the establishment of Innovative SAH treatments.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Fangzhou Jiao ◽  
Yao Wang ◽  
Qian Chen ◽  
Pan Cao ◽  
Chunxia Shi ◽  
...  

Hepatic encephalopathy (HE) is a neuropsychiatric disorder resulting from acute or chronic liver failure. This study is aimed at investigating the therapeutic effects and mechanisms of SIRT1 in thioacetamide- (TAA-) induced rat HE models. A selective activator (CAY10602) and inhibitor (EX527) of SIRT1 were used in this study. All male rats were separated into control, TAA, CAY10602+TAA, and EX527+TAA groups. Histological damage, liver function, serum ammonia, behavioral changes, and brain oxidative stress were measured in each group. Western blotting was used to measure SIRT1, NLRP3, ASC, and IL-1β protein expression. The results showed that CAY10602 alleviated liver injury, improved neurological decline, reduced microglial activation and brain oxidative stress, and improved the survival rates of HE rats. Moreover, CAY10602 inhibited activation of the NLRP3 inflammasome in microglia of the brain cortex in HE rats. Next, cell experiments confirmed that CAY10602 inhibited activation of the NLRP3 inflammasome in BV2 microglial cells. However, inhibition of SIRT1 by EX527 or lentivirus could enhance activation of the NLRP3 inflammasome in this process. Finally, CAY10602 reduced the neurotoxicity induced by high levels of ammonia in HT22 cells. Taken together, CAY10602 alleviates TAA-induced HE by suppressing microglial activation and the NLRP3 inflammasome and reducing the neurotoxicity of NH4Cl in HT22 cells. A pharmacologic activator of SIRT1 may be a promising approach for the treatment of HE.


2021 ◽  
Vol 11 (9) ◽  
pp. 1250
Author(s):  
Ibanelo Cortez ◽  
Patricia S. Brocardo ◽  
J. Leigh Leasure

Binge alcohol consumption and alcohol use disorders (AUD) are prevalent, and there is comorbidity with depression and anxiety. Potential underlying mechanisms include neurophysiological, genetic, and metabolic changes resulting from alcohol exposure. Mood and anxiety disorders are more common among women, but whether females are more susceptible to binge-induced oxidative stress and co-occurring anxiety and depression-like behaviors remains unknown. Here, we used a repeated, weekly binge alcohol paradigm in male and female rats to investigate sex differences in despair and anxiety-like behaviors and brain oxidative stress parameters. A single binge alcohol exposure significantly elevated glutathione (GSH) levels in prefrontal cortex (PFC) of both male and female animals. This was accompanied by increased lipid peroxidation in PFC of both sexes. Repeated (once weekly) binge exposure induced changes in anxiety- and depression-like behaviors in both males and females and increased GSH level in the PFC without detectable oxidative damage. Our findings suggest that repeated binge alcohol exposure influences affect regardless of sex and in the absence of membrane damage.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anton Malkov ◽  
Irina Popova ◽  
Anton Ivanov ◽  
Sung-Soo Jang ◽  
Seo Yeon Yoon ◽  
...  

AbstractA predominant trigger and driver of sporadic Alzheimer’s disease (AD) is the synergy of brain oxidative stress and glucose hypometabolism starting at early preclinical stages. Oxidative stress damages macromolecules, while glucose hypometabolism impairs cellular energy supply and antioxidant defense. However, the exact cause of AD-associated glucose hypometabolism and its network consequences have remained unknown. Here we report NADPH oxidase 2 (NOX2) activation as the main initiating mechanism behind Aβ1-42-related glucose hypometabolism and network dysfunction. We utilize a combination of electrophysiology with real-time recordings of metabolic transients both ex- and in-vivo to show that Aβ1-42 induces oxidative stress and acutely reduces cellular glucose consumption followed by long-lasting network hyperactivity and abnormalities in the animal behavioral profile. Critically, all of these pathological changes were prevented by the novel bioavailable NOX2 antagonist GSK2795039. Our data provide direct experimental evidence for causes and consequences of AD-related brain glucose hypometabolism, and suggest that targeting NOX2-mediated oxidative stress is a promising approach to both the prevention and treatment of AD.


2021 ◽  
Vol 23 (5) ◽  
pp. 636-645
Author(s):  
Nahid Sarahian ◽  
Mohammad Taghi Mohammadi ◽  
Shima Shahyad ◽  
Mohsen Rezaei ◽  
◽  
...  

2021 ◽  
pp. 109603
Author(s):  
Priscila Laiz Zimath ◽  
Ana Paula Dalmagro ◽  
Luísa Mota da Silva ◽  
Angela Malheiros ◽  
Márcia Maria de Souza

Sign in / Sign up

Export Citation Format

Share Document