The role of physicochemical processes in controlling sediment transport and deposition in turbidity currents

2004 ◽  
Vol 204 (1-2) ◽  
pp. 1-9 ◽  
Author(s):  
A.I. Packman ◽  
D. Jerolmack

JOIDES drilling results provide new evidence concerning facies patterns on evolving passive margins that strengthens and extends hypotheses constructed from studies of morphology, seismic reflexion data and shallow samples on modern margins, and from field geologic studies of uplifted ancient margins. On the slopes and rise, gravity-controlled mechanisms - turbidity currents, debris flows, slides and the like - play the dominant role in sediment transport over the long term, but when clastic supplies are reduced, as for example during rapid transgressions, then oceanic sedimentation and the effects of thermohaline circulation become important. Sedimentary facies models used as the basis of unravelling tectonic complexities of some deformed margins, for example in the Mesozoic Tethys, may be too simplistic in the light of available data from modern continental margins.


2020 ◽  
Author(s):  
Daniel A. S. Conde ◽  
Robert M. Boes ◽  
David F. Vetsch

<p>Riverine environments are amongst the most complex ecosystems on the planet. As several anthropogenic factors have increasingly disrupted the natural dynamics of rivers, namely through stream regulation, the need for re-establishing the ecological role of these systems has gained relevance.</p><p>Of particular interest are floodplains in compound channels, primarily regarded for safety against floods, but which also comprise an extensive realm for ecological functions and establishment of various species. Floodplain vegetation affects flow resistance and dispersion, playing a fundamental role in erosion and deposition of suspended sediment.</p><p>The present work aims at quantifying the interaction between vegetation and suspended sediment transport on floodplains in compound channels by numerical simulations. The employed numerical tool is BASEMENT v3, a GPU-accelerated hydro-morphodynamic 2D model developed at the Laboratory of Hydraulics, Hydrology and Glaciology of ETH Zurich. In the context of the present study, the model is extended with turbulence and suspended sediment transport capabilities. The implemented closure models for turbulence pertain to three major groups, namely (i) mixing-length, (ii) production-dissipation and (iii) algebraic stress models. For suspended sediment transport, the main classical formulations from fluvial hydraulics were implemented in the numerical model.</p><p>Laboratory data from flume experiments featuring suspended sediment load and vegetation-like proxies are used for model validation. The numerical results are compared with the observed water depths, velocities and sediment concentrations for different sets of experiments with varying properties, such as density and submergence. The implemented closure models for flow resistance, turbulence and suspended sediment are then combined, calibrated and classified in terms of numerical output quality.</p><p>The obtained results from this modelling effort mainly contribute to understanding the applicability of 2D (depth-averaged) models to complex eco-morphodynamics scenarios. The calibration and rating of well-known closure models for turbulence and sediment transport provides relevant guidelines for both future research and practice in fluvial modelling.</p>


2020 ◽  
Author(s):  
Ruoyin Zhang ◽  
Baosheng Wu ◽  
Y. Joseph Zhang

<p>Density-driven gravity flows frequently occur in nature, due to density difference between inflowing and ambient water. When a sediment-laden flow reaches the backwater zone of a reservoir, with a greater density than the ambient waters, an underflow can occur along steep bottom slopes. The formation and evolution of an underflow depend on various natural conditions. It is necessary and crucial for reservoir management to understand the dynamics and prediction of the turbidity currents. In addition to field investigation and laboratory experiments, numerical models are gaining popularity for solving open-channel flows and sediment transport processes such as turbidity currents in reservoirs.</p><p>SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model) is a 3D seamless cross-scale model grounded on unstructured grids for hydrodynamics and ecosystem dynamics. A general set of governing equations are used for the flow and tracer transport, and a new higher-order implicit advection scheme for transport (TVD<sup>2</sup>) is proposed. A mixed triangular-quadrangular horizontal grid and a highly flexible vertical grid system are developed in the model to faithfully represent complex geometry and topography of environmental flows in open channel cases. SCHISM has found a wide range of cross-scale applications worldwide including general circulation, storm surges, sediment transport and so on. However, the feasibility of simulating turbidity currents caused by sediment-laden flows in a reservoir is rarely validated. In this study, SCHISM is applied to a lab experiment to simulate the turbidity currents on a flume slope to examine how the model predicts the hydraulic characteristics of turbidity currents in a reservoir.</p><p>Model results can describe the process of the turbidity current plunging beneath the free surface with the time step of 0.1s. It is relatively uncommon in previous studies to clearly show the evolution of the velocity and sediment concentration profiles in such a short time step. The simulated velocity and sediment concentration profiles of the turbidity currents match well with the measured profiles at the cross section downstream of the plunge point. The calculated depth-averaged velocity, thickness, and depth-averaged concentration of the turbidity current all agree well with the measured values. The correlation coefficient between the measured and calculated values is 0.92, 0.95, and 0.94, respectively. Also, the densimetric Froude number of the stable plunge point is found to be approximately 0.54 in this study, which is between 0.5 and 0.8 based on previous research. The plunge depth is smaller with higher sediment concentration and smaller discharge of the inflow. Besides, the ratio of plunge depth to inlet depth is proportional to the densimetric Froude number of inflow conditions. This finding can be used to predict the depth and location of the plunge point based on the inflow conditions in a reservoir, which has great practical implications in reservoir management. Our results demonstrated that SCHISM is generally applicable to simulate the turbidity currents in small-scale water environments, and has the potential to be adopted in large-scale open water environments.</p>


Sign in / Sign up

Export Citation Format

Share Document