scholarly journals Mean Field Asymptotics of Generalized Quantum Kinetic Equation

2012 ◽  
Vol 70 (2) ◽  
pp. 135-147
Author(s):  
V.I. Gerasimenko ◽  
Zh.A. Tsvir
Author(s):  
Klaus Morawetz

The classical non-ideal gas shows that the two original concepts of the pressure based of the motion and the forces have eventually developed into drift and dissipation contributions. Collisions of realistic particles are nonlocal and non-instant. A collision delay characterizes the effective duration of collisions, and three displacements, describe its effective non-locality. Consequently, the scattering integral of kinetic equation is nonlocal and non-instant. The non-instant and nonlocal corrections to the scattering integral directly result in the virial corrections to the equation of state. The interaction of particles via long-range potential tails is approximated by a mean field which acts as an external field. The effect of the mean field on free particles is covered by the momentum drift. The effect of the mean field on the colliding pairs causes the momentum and the energy gains which enter the scattering integral and lead to an internal mechanism of energy conversion. The entropy production is shown and the nonequilibrium hydrodynamic equations are derived. Two concepts of quasiparticle, the spectral and the variational one, are explored with the help of the virial of forces.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 264
Author(s):  
Daniel Boyanovsky

We study various production mechanisms of sterile neutrinos in the early universe beyond and within the standard model. We obtain the quantum kinetic equations for production and the distribution function of sterile-like neutrinos at freeze-out, from which we obtain free streaming lengths, equations of state and coarse grained phase space densities. In a simple extension beyond the standard model, in which neutrinos are Yukawa coupled to a Higgs-like scalar, we derive and solve the quantum kinetic equation for sterile production and analyze the freeze-out conditions and clustering properties of this dark matter constituent. We argue that in the mass basis, standard model processes that produce active neutrinos also yield sterile-like neutrinos, leading to various possible production channels. Hence, the final distribution function of sterile-like neutrinos is a result of the various kinematically allowed production processes in the early universe. As an explicit example, we consider production of light sterile neutrinos from pion decay after the QCD phase transition, obtaining the quantum kinetic equation and the distribution function at freeze-out. A sterile-like neutrino with a mass in the keV range produced by this process is a suitable warm dark matter candidate with a free-streaming length of the order of few kpc consistent with cores in dwarf galaxies.


1998 ◽  
Vol 07 (06) ◽  
pp. 709-722 ◽  
Author(s):  
S. Schmidt ◽  
D. Blaschke ◽  
G. Röpke ◽  
S. A. Smolyansky ◽  
A. V. Prozorkevich ◽  
...  

A quantum kinetic equation is derived for the description of pair production in a time-dependent homogeneous electric field E(t). As a source term, the Schwinger mechanism for particle creation is incorporated. Possible particle production due to collisions and collisional damping are neglected. The main result is a kinetic equation of non-Markovian character. In the low density approximation, the source term is reduced to the leading part of the well known Schwinger formula for the probability of pair creation. We discuss the momentum and time dependence of the derived source term and compare with other approaches.


2008 ◽  
Vol 37 (5-7) ◽  
pp. 589-600 ◽  
Author(s):  
D. Mostacci ◽  
V. Molinari ◽  
F. Pizzio

2018 ◽  
Vol 97 (8) ◽  
Author(s):  
Zhi Li ◽  
Ya-Qin Jin ◽  
Takami Tohyama ◽  
Toshiaki Iitaka ◽  
Jiu-Xing Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document