collisional damping
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 13)

H-INDEX

22
(FIVE YEARS 1)

Author(s):  
Xingyu Guo ◽  
Ryo Ashida ◽  
Yuto Noguchi ◽  
Ryusuke Kajita ◽  
Hitoshi Tanaka ◽  
...  

Abstract By using a newly developed five-pin probe antenna and two-dimensional mechanical probe driving system, the 2-D wave pattern of phase and amplitude has been directly measured in Low Aspect ratio Torus Experiment (LATE), for an overdense ECR plasma with microwave obliquely injected. In the case of O-mode injection, an EBW-like wave pattern has been detected for the first time, in a localized region near the upper hybrid resonance layer. The pattern has a short wavelength of about 2 mm and is also electrostatic and backward. In the case of X-mode injection, the 2-D wave pattern is quite different and no EBW signal can be observed. By adjusting the toroidal magnetic field in O-mode injection, it is found that both the position and size of the EBW region have changed, which suggest the localized condition of efficient O-X-B conversion and high collisional damping rate of EBWs in these experiments.


2021 ◽  
Vol 87 (6) ◽  
Author(s):  
Myoung-Jae Lee ◽  
In Sun Park ◽  
Sunghoon Hong ◽  
Kyu-Sun Chung ◽  
Young-Dae Jung

The dissipation of ion-acoustic surface waves propagating in a semi-bounded and collisional plasma which has a boundary with vacuum is theoretically investigated and this result is used for the analysis of edge-relevant plasma simulated by Divertor Plasma Simulator-2 (DiPS-2). The collisional damping of the surface wave is investigated for weakly ionized plasmas by comparing the collisionless Landau damping with the collisional damping as follows: (1) the ratio of ion temperature $({T_i})$ to electron temperature $({T_e})$ should be very small for the weak collisionality $({T_i}/{T_e} \ll 1)$ ; (2) the effect of collisionless Landau damping is dominant for the small parallel wavenumber, and the decay constant is given as $\gamma \approx{-} \sqrt {\mathrm{\pi }/2} {k_\parallel }{\lambda _{De}}\omega _{pi}^2/{\omega _{pe}}$ ; and (3) the collisional damping dominates for the large parallel wavenumber, and the decay constant is given as $\gamma \approx{-} {\nu _{in}}/16$ , where ${\nu _{in}}$ is the ion–neutral collisional frequency. An experimental simulation of the above theoretical prediction has been done in the argon plasma of DiPS-2, which has the following parameters: plasma density ${n_e} = (\textrm{2--9)} \times \textrm{1}{\textrm{0}^{11}}\;\textrm{c}{\textrm{m}^{ - 3}}$ , ${T_e} = 3.7- 3.8\;\textrm{eV}$ , ${T_i} = 0.2- 0.3\;\textrm{eV}$ and collision frequency ${\nu _{in}} = 23- 127\;\textrm{kHz}$ . Although the wavelength should be specified with the given parameters of DiPS-2, the collisional damping is found to be $\gamma = ( - 0.9\;\textrm{to}\; - 5) \times {10^4}\;\textrm{rad}\;{\textrm{s}^{ - 1}}$ for ${k_\parallel }{\lambda _{De}} = 10$ , while the Landau damping is found to be $\gamma = ( - 4\;\textrm{to}\; - 9) \times {10^4}\;\textrm{rad}\;{\textrm{s}^{ - 1}}$ for ${k_\parallel }{\lambda _{De}} = 0.1$ .


2021 ◽  
Author(s):  
Shanxiu XIE ◽  
Yong CHEN ◽  
Junchen YE ◽  
Yugu CHEN ◽  
Na PENG ◽  
...  

Abstract Stimulated Raman scattering (SRS) is one of the main instabilities affecting the success of the fusion ignition. Here, we study the relationship between Raman growth and Landau damping with various distribution functions combining the analytic formulas and Vlasov simulations. The Landau damping obtained by Vlasov-Poisson simulation and Raman growth rate obtained by Vlasov-Maxwell simulation are anti-correlated, which is consistent with our theoretical analysis quantitatively. Maxwellian distribution, flattened distribution, and bi-Maxwellian distribution are studied in detail, which represent three typical stages of SRS. We have also demonstrated the effects of plateau width, hot-electron fraction, hot-to-cold electron temperature ratio, and collisional damping on the Landau damping and growth rate. It gives us a deep understanding of SRS and possible ways to mitigate SRS through manipulating distribution functions to a high Landau damping regime.


2021 ◽  
Vol 87 (5) ◽  
Author(s):  
B.J. Frei ◽  
J. Ball ◽  
A.C.D. Hoffmann ◽  
R. Jorge ◽  
P. Ricci ◽  
...  

The derivation and numerical implementation of a linearized version of the gyrokinetic (GK) Coulomb collision operator (Jorge et al., J. Plasma Phys., vol. 85, 2019, 905850604) and of the widely used linearized GK Sugama collision operator (Sugama et al., Phys. Plasmas, vol. 16, 2009, 112503) is reported. An approach based on a Hermite–Laguerre moment expansion of the perturbed gyrocentre distribution function is used, referred to as gyromoment expansion. This approach allows the considering of arbitrary perpendicular wavenumber and expressing the two linearized GK operators as a linear combination of gyromoments where the expansion coefficients are given by closed analytical expressions that depend on the perpendicular wavenumber and on the temperature and mass ratios of the colliding species. The drift-kinetic (DK) limits of the GK linearized Coulomb and Sugama operators are also obtained. Comparisons between the gyromoment approach and the DK Coulomb and GK Sugama operators in the continuum GK code GENE are reported, focusing on the ion-temperature-gradient instability and zonal flow damping, finding an excellent agreement. It is confirmed that stronger collisional damping of the zonal flow residual by the Sugama GK model compared with the GK linearized Coulomb (Pan et al., Phys. Plasmas, vol. 27, 2020, 042307) persists at higher collisionality. Finally, we show that the numerical efficiency of the gyromoment approach increases with collisionality, a desired property for boundary plasma applications.


2021 ◽  
Vol 383 ◽  
pp. 318-327
Author(s):  
Tobias Eidevåg ◽  
Erik S. Thomson ◽  
Sofia Sollén ◽  
Johan Casselgren ◽  
Anders Rasmuson

2020 ◽  
Vol 6 (4) ◽  
pp. 18-25
Author(s):  
Anatoliy Nekrasov ◽  
Vyacheslav Pilipenko

We have studied MHD waves (Alfvén and fast compressional modes) in a homogeneous collisional three-component low-β plasma. The three-component plasma consists of electrons, ions, and neutrals with arbitrary ratio between collision frequencies and wave time scales. We have derived a general dispersion equation and relationships for phase velocity and collisional damping rates for MHD modes for various limiting cases: from weak collisions to a strong collisional coupling, and for longitudinal and oblique propagation. In a weak collision limit, the MHD eigen-modes are reduced to ordinary low-damping Alfvén and fast magnetosonic waves. For a partially ionized plasma with a strong collisional coupling of neutrals and ions, velocities of magnetosonic and Alfvén waves are substantially reduced, as compared to the Alfvén velocity in the ideal MHD theory. At a very low frequency, when neutrals and ions are strongly coupled, a possibility arises of weakly damping MHD modes, called “decelerated” MHD modes. These modes can be observed in the solar corona/chromosphere and in the F layer of the terrestrial ionosphere.


2020 ◽  
Vol 6 (4) ◽  
pp. 17-23
Author(s):  
Anatoliy Nekrasov ◽  
Vyacheslav Pilipenko

We have studied MHD waves (Alfvén and fast compressional modes) in a homogeneous collisional three-component low-β plasma. The three-component plasma consists of electrons, ions, and neutrals with arbitrary ratio between collision frequencies and wave time scales. We have derived a general dispersion equation and relationships for phase velocity and collisional damping rates for MHD modes for various limiting cases: from weak collisions to a strong collisional coupling, and for longitudinal and oblique propagation. In a weak collision limit, the MHD eigen-modes are reduced to ordinary low-damping Alfvén and fast magnetosonic waves. For a partially ionized plasma with a strong collisional coupling of neutrals and ions, velocities of magnetosonic and Alfvén waves are substantially reduced, as compared to the Alfvén velocity in the ideal MHD theory. At a very low frequency, when neutrals and ions are strongly coupled, a possibility arises of weakly damping MHD modes, called “decelerated” MHD modes. These modes can be observed in the solar corona/chromosphere and in the F layer of the terrestrial ionosphere.


2020 ◽  
Vol 35 (29) ◽  
pp. 2030016
Author(s):  
Georg Wolschin

The spectroscopic properties of heavy quarkonia are substantially different in the quark–gluon plasma (QGP) that is created in relativistic heavy-ion collisions as compared to the vacuum situation that can be tested in [Formula: see text] collisions at the same center-of-mass energy. In this paper, a series of recent works about the dissociation of the [Formula: see text] and [Formula: see text] states in the hot QGP are summarized. Quarkonia dissociation occurs due to (1) screening of the real quark-antiquark potential, (2) collisional damping through the imaginary part of the potential, and (3) gluon-induced dissociation. In addition, reduced feed-down plays a decisive role for the spin-triplet ground state. Transverse-momentum and centrality-dependent data are well reproduced in Pb–Pb collisions at LHC energies. In the asymmetric [Formula: see text]-Pb system, alterations of the parton density functions in the lead nucleus account for the leading fraction of the modifications in cold nuclear matter (CNM), but the hot-medium effects turn out to be relevant in spite of the small initial spatial extent of the fireball, providing additional evidence for the generation of a quark–gluon droplet.


Sign in / Sign up

Export Citation Format

Share Document