Carbon allocation and decomposition of root-derived organic matter in a plant–soil system of Calluna vulgaris as affected by elevated CO2

1998 ◽  
Vol 30 (10-11) ◽  
pp. 1251-1258 ◽  
Author(s):  
P.S.J. Verburg ◽  
A. Gorissen ◽  
W.J. Arp
2021 ◽  
Author(s):  
Oleg Chertov ◽  
Yakov Kuzyakov ◽  
Irina Priputina ◽  
Pavel Frolov ◽  
Vladimir Shanin ◽  
...  

Abstract Purpose. This study is aimed to develop a model of priming effect (accelerated mineralisation of soil organic matter (SOM)) induced by root exudate input into nitrogen (N) limited rhizosphere soil as a typical case for most terrestrial ecosystems. This ecologically important process in the functioning of the “plant-soil” system was parameterized for temperate and boreal forests.Methods. A model of priming effect has been developed based on the concept of N mining to making up for the N scarcity in exudates by accelerating SOM mineralisation. Lacking N for microbial growth is mined from the SOM mineralisation considering C:N ratio of soil. The model has a built-in food web module, which calculates soil fauna feeding on microorganisms, the release of by-products of faunal metabolism and mineral N used for root uptake.Results. The model verification demonstrated the similar order of the priming effect as in the published experiments. Testing at the pedon level revealed a high sensitivity of the model to N content in root exudates. Testing of the model at the ecosystem level revealed that CO2 emission from the priming can reach 25–30% of CO2 emission from the whole Ah horizon of forest soil. The same intensities were simulated for the fauna-derived N released within the rhizosphere.Conclusion. The new model reflects important ecological consequences of the main target function of priming effects within the “plant – soil – microorganisms – fauna” system – the microbial acceleration of C and N cycling in the rhizosphere and detritusphere to mobilise mineral N for plants.


2014 ◽  
Vol 11 (11) ◽  
pp. 15911-15943
Author(s):  
M. S. Studer ◽  
R. T. W. Siegwolf ◽  
M. Leuenberger ◽  
S. Abiven

Abstract. Isotope labelling is a powerful tool to study elemental cycling within terrestrial ecosystems. Here we describe a new multi-isotope technique to label organic matter (OM). We exposed poplars (Populus deltoides x nigra) for 14 days to an atmosphere enriched in 13CO2 and depleted in 2H218O. After one week, the water-soluble leaf OM (δ13C = 1346 ± 162‰) and the leaf water were strongly labelled (δ18O = −63± 8‰, δ2H = −156 ± 15‰). The leaf water isotopic composition was between the atmospheric and stem water, indicating a considerable diffusion of vapour into the leaves (58–69%). The atomic ratios of the labels recovered (18O/13C, 2H/13C) were 2–4 times higher in leaves than in the stems and roots. This either indicates the synthesis of more condensed compounds (lignin vs. cellulose) in roots and stems, or be the result of O and H exchange and fractionation processes during transport and biosynthesis. We demonstrate that the three major OM elements (C, O, H) can be labelled and traced simultaneously within the plant. This approach could be of interdisciplinary interest for the fields of plant physiology, paleoclimatic reconstruction or soil science.


Sign in / Sign up

Export Citation Format

Share Document