scholarly journals Growth of self-assembled copper nanostructure on conducting polymer by electrodeposition

2003 ◽  
Vol 125 (7-8) ◽  
pp. 365-368 ◽  
Author(s):  
D.K. Sarkar ◽  
X.J. Zhou ◽  
A. Tannous ◽  
M. Louie ◽  
K.T. Leung
1995 ◽  
Vol 75 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Zhiqiang Gao ◽  
Kok Siong Siow ◽  
Hardy Sze On Chan

1990 ◽  
Vol 64 (18) ◽  
pp. 2180-2183 ◽  
Author(s):  
A. Fizazi ◽  
J. Moulton ◽  
K. Pakbaz ◽  
S. D. D. V. Rughooputh ◽  
Paul Smith ◽  
...  

2003 ◽  
Vol 15 (14) ◽  
pp. 2699-2701 ◽  
Author(s):  
Ziqi Liang ◽  
Mindaugas Rackaitis ◽  
Kun Li ◽  
Evangelos Manias ◽  
Qing Wang

ACS Nano ◽  
2020 ◽  
Vol 14 (6) ◽  
pp. 6607-6615 ◽  
Author(s):  
Lei Jia ◽  
Chenchen Wang ◽  
Yuchun Zhang ◽  
Liu Yang ◽  
Yong Yan

ACS Nano ◽  
2012 ◽  
Vol 6 (11) ◽  
pp. 9920-9931 ◽  
Author(s):  
Alexander B. Neuhausen ◽  
Ali Hosseini ◽  
Joseph A. Sulpizio ◽  
Christopher E. D. Chidsey ◽  
David Goldhaber-Gordon

2001 ◽  
Vol 708 ◽  
Author(s):  
Daniela Marciu ◽  
Michael B. Miller ◽  
Carrie Kozikowski ◽  
J. R. Heflin ◽  
Sung Cho ◽  
...  

ABSTRACTWe describe detailed studies of ionically self-assembled monolayer (ISAM) photovoltaic (PV) devices incorporating various electron acceptor materials, such as fullerenes and phthalocyanines. Excitons are generated when the conducting polymer is irradiated, and the electron acceptors aid in dissociating the electron/hole pairs before they can radiatively recombine, thus improving the efficiency of the PV process. The ISAM technique allows the deposition of conducting polymer and electron acceptor materials in alternating layers of nanometer-scale thickness. This ensures that every photoexcited electron-hole pair is in proximity to an electron acceptor, thus minimizing electron-hole recombination and increasing the photocurrent. The individual thickness of each monolayer and the interpenetration of adjacent layers can be precisely controlled through the parameters of the electrolyte solutions. Using the ISAM technique, we have demonstrated that it is possible to create ultrathin films (100 nm) of PV material that have enhanced efficiencies.


Sign in / Sign up

Export Citation Format

Share Document