The effect of thermal barrier coatings on diesel engine performance

Vacuum ◽  
2002 ◽  
Vol 65 (3-4) ◽  
pp. 427-432 ◽  
Author(s):  
T. Hejwowski ◽  
A. Weroński
Author(s):  
P Ramaswamy ◽  
S Seetharamu ◽  
K B R Verma ◽  
N Raman ◽  
K J Rao

8%Y2O3-stabilized zirconia (8YPSZ) and mullite (3Al2O3·2SiO2) powders, which were made plasma sprayable by using an organic binder (polyvinyl alcohol), have been plasma spray coated on to the piston head, valves and cylinder head of a 3.8kW single-cylinder diesel engine, previously coated with Ni-Cr-Al-Y bond coat. The engine with components coated with 250 μm thick 8YPSZ and 1 mm thick mullite thermal barrier coatings has been evaluated for fuel efficiency and for endurance during 500 h long rigorous tests. Improved fuel efficiency was shown by the engine with coated components and the results are discussed. The coatings and the coated components have also been examined for phases, microstructure and chemical composition by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX). Mullite coatings were found to exhibit increased resistance to microcracking compared with 8YPSZ during the 500 h endurance test.


Author(s):  
Anders Thibblin ◽  
Siamak Kianzad ◽  
Stefan Jonsson ◽  
Ulf Olofsson

Thermal barrier coatings have the potential to improve the fuel efficiency of heavy-duty diesel engines by reducing heat losses. A method for in-situ measurement of heat flux from the combustion chamber of a heavy-duty diesel engine has been developed and was used to study the running-in behaviour of different thermal barrier coating materials and types of microstructures. The in-situ measurements show that the initial heat flux was reduced by up to 4.7% for all investigated thermal barrier coatings compared to a steel reference, except for an yttria-stabilized zirconia coating with sealed pores that had an increase of 12.0% in heat flux. Gd2Zr2O7 had the lowest initial value for heat flux. However, running-in shows the lowest values for yttria-stabilized zirconia after 2–3 h. Potential spallation problems were observed for Gd2Zr2O7 and La2Zr2O7.


1994 ◽  
Vol 116 (1) ◽  
pp. 250-257 ◽  
Author(s):  
S. M. Meier ◽  
D. K. Gupta

Thermal barrier coatings (TBCs) have been used for almost three decades to extend the life of combustors and augmentors and, more recently, stationary turbine components. Plasma-sprayed yttria-stabilized zirconia TBC currently is bill-of-material on many commercial jet engine parts. A more durable electron beam-physical vapor deposited (EB-PVD) ceramic coating recently has been developed for more demanding rotating as well as stationary turbine components. This ceramic EB-PVD is bill-of-material on turbine blades and vanes in current high thrust engine models and is being considered for newer developmental engines as well. To take maximum advantage of potential TBC benefits, the thermal effect of the TBC ceramic layer must become an integral element of the hot section component design system. To do this with acceptable reliability requires a suitable analytical life prediction model calibrated to engine experience. The latest efforts in thermal barrier coatings are directed toward correlating such models to measured engine performance.


1992 ◽  
Vol 114 (2) ◽  
pp. 264-267 ◽  
Author(s):  
T. E. Strangman

Thermal barrier coatings (TBCs) are applied to hot gas path surfaces to reduce metal temperatures and thermal stresses for improved turbine component durability. Improvements in engine performance are achieved when TBCs enable reductions in cooling air usage and turbine blade tip-shroud clearances. This paper describes the development of thick TBCs with superior strain tolerance. A pattern of grooves or slant steps incorporated into the surface to be coated enables the development of shadow gaps in the ceramic layer during plasma spray deposition. These gaps segment the TBC, permitting ceramic-metal thermal expansion mismatch and thermal strains to be accommodated by free expansion.


2001 ◽  
Vol 697 ◽  
Author(s):  
Jesse G. Muchai ◽  
Ajit D. Kelkar ◽  
David E. Klett ◽  
Jagannathan Sankar

AbstractThe purpose of this paper is to investigate the piston temperature and stress distribution resulting from varying coating thicknesses of Partially Stabilized Zirconia (PSZ) thermal barrier coatings for the performance in diesel engine applications. This analysis is based on the premise that coating thickness affects the heat transfer and temperature distribution in the piston. A gas dynamic engine cycle simulation code was used to obtain thermal boundary conditions on the piston then, a 2-D axisymmetric Finite Element Analysis (FEA) using ANSYS was performed to evaluate the temperature and stress distributions in the piston as a function of coating thickness. Coating thicknesses studied include 0.1, 0.2, 0.3, 0.5, 1.0, 1.5, and 2.0mm. The results indicate increased piston surface temperature with increasing coating thickness. The maximum stress on the coated piston surface was high while the substrate stress was less than the coating yield stress for all coating thicknesses. Further, the analysis showed that the interface stress at all coated conditions is low enough such that no separation of the coating is expected. The FEA results suggest an optimum coating thickness of 0.1 to 1.5 mm for diesel engine application to avoid unduly high stress in the ceramic.


Sign in / Sign up

Export Citation Format

Share Document