Phosphorus Nutrition as a Factor Influencing Photosynthesis in Maize Plants II. The Effect of Phosphorus Level on the Primary Metabolites and on the Carbon Flow to the End Products of Photosynthesis

1983 ◽  
Vol 112 (2) ◽  
pp. 163-170
Author(s):  
G. Bystrzejewska ◽  
S. Maleszewski
2000 ◽  
Vol 66 (6) ◽  
pp. 2461-2470 ◽  
Author(s):  
Mickaël Desvaux ◽  
Emmanuel Guedon ◽  
Henri Petitdemange

ABSTRACT A reinvestigation of cellulose degradation by Clostridium cellulolyticum in a bioreactor with pH control of the batch culture and using a defined medium was performed. Depending on cellulose concentration, the carbon flow distribution was affected, showing the high flexibility of the metabolism. With less than 6.7 g of cellulose liter−1, acetate, ethanol, H2, and CO2 were the main end products of the fermentation and cellulose degradation reached more than 85% in 5 days. The electron flow from the glycolysis was balanced by the production of H2 and ethanol, the latter increasing with increasing initial cellulose concentration. From 6.7 to 29.1 g of cellulose liter−1, the percentage of cellulose degradation declined; most of the cellulase activity remained on the cellulose fibers, the maximum cell density leveled off, and the carbon flow was reoriented from ethanol to acetate. In addition to that of previously indicated end products, lactate production rose, and, surprisingly enough, pyruvate overflow occurred. Concomitantly the molar growth yield and the energetic yield of the biomass decreased. Growth arrest may be linked to sufficiently high carbon flow, leading to the accumulation of an intracellular inhibitory compound(s), as observed on cellobiose (E. Guedon, M. Desvaux, S. Payot, and H. Petitdemange, Microbiology 145:1831–1838, 1999). These results indicated that bacterial metabolism exhibited on cellobiose was distorted compared to that exhibited on a substrate more closely related to the natural ecosystem of C. cellulolyticum. To overcome growth arrest and to improve degradation at high cellulose concentrations (29.1 g liter−1), a reinoculation mode was evaluated. This procedure resulted in an increase in the maximum dry weight of cells (2,175 mg liter−1), cellulose solubilization (95%), and end product concentrations compared to a classical batch fermentation with a final dry weight of cells of 580 mg liter−1 and 45% cellulose degradation within 18 days.


1981 ◽  
Vol 101 (3) ◽  
pp. 249-255 ◽  
Author(s):  
Grazyna Bystrzejewska ◽  
S. Maleszewski

2021 ◽  
Vol 118 (22) ◽  
pp. e2017890118
Author(s):  
Ryosuke Sugiyama ◽  
Rui Li ◽  
Ayuko Kuwahara ◽  
Ryo Nakabayashi ◽  
Naoyuki Sotta ◽  
...  

Specialized (secondary) metabolic pathways in plants have long been considered one-way routes of leading primary metabolite precursors to bioactive end products. Conversely, endogenous degradation of such “end” products in plant tissues has been observed following environmental stimuli, including nutrition stress. Therefore, it is of general interest whether specialized metabolites can be reintegrated into primary metabolism to recover the invested resources, especially in the case of nitrogen- or sulfur-rich compounds. Here, we demonstrate that endogenous glucosinolates (GLs), a class of sulfur-rich plant metabolites, are exploited as a sulfur source by the reallocation of sulfur atoms to primary metabolites such as cysteine in Arabidopsis thaliana. Tracer experiments using 34S- or deuterium-labeled GLs depicted the catabolic processing of GL breakdown products in which sulfur is mobilized from the thioglucoside group in GL molecules, potentially accompanied by the release of the sulfate group. Moreover, we reveal that beta-glucosidases BGLU28 and BGLU30 are the major myrosinases that initiate sulfur reallocation by hydrolyzing particular GL species, conferring sulfur deficiency tolerance in A. thaliana, especially during early development. The results delineate the physiological function of GL as a sulfur reservoir, in addition to their well-known functions as defense chemicals. Overall, our findings demonstrate the bidirectional interaction between primary and specialized metabolism, which enhances our understanding of the underlying metabolic mechanisms via which plants adapt to their environments.


1991 ◽  
Vol 82 (3) ◽  
pp. 423-432 ◽  
Author(s):  
Gabor J. Bethlenfalvay ◽  
Maria G. Reyes-Solis ◽  
Susan B. Camel ◽  
Ronald Ferrera-Cerrato

Sign in / Sign up

Export Citation Format

Share Document