Explicit time integration algorithms for structural dynamics with optimal numerical dissipation

1996 ◽  
Vol 137 (2) ◽  
pp. 175-188 ◽  
Author(s):  
Gregory M. Hulbert ◽  
Jintai Chung
Author(s):  
Yi Ji ◽  
Yufeng Xing

This paper develops a family of optimized [Formula: see text]-sub-step time integration methods for structural dynamics, in which the generalized trapezoidal rule is used in the first [Formula: see text] sub-steps, and the last sub-step employs [Formula: see text]-point backward difference formula. The proposed methods can achieve second-order accuracy and unconditional stability, and their degree of numerical dissipation can range from zero to one. Also, the proposed methods can achieve the identical effective stiffness matrices for all sub-steps, reducing computational costs in the analysis of linear systems. Using the spectral analysis, optimized algorithmic parameters are presented, ensuring that the proposed methods can accurately calculate different types of dynamic problems such as wave propagation, stiff and nonlinear systems. Besides, with the increase in the number of sub-steps, the accuracy of the proposed methods can be enhanced without extra workload compared with single-step methods. Numerical experiments show that the proposed methods perform better in different dynamic systems.


2017 ◽  
Vol 84 (7) ◽  
Author(s):  
Wooram Kim ◽  
J. N. Reddy

For the development of a new family of implicit higher-order time integration algorithms, mixed formulations that include three time-dependent variables (i.e., the displacement, velocity, and acceleration vectors) are developed. Equal degree Lagrange type interpolation functions in time are used to approximate the dependent variables in the mixed formulations, and the time finite element method and the modified weighted-residual method are applied to the velocity–displacement and velocity–acceleration relations of the mixed formulations. Weight parameters are introduced and optimized to achieve preferable attributes of the time integration algorithms. Specific problems of structural dynamics are used in the numerical examples to discuss some fundamental limitations of the well-known second-order accurate algorithms as well as to demonstrate advantages of using the developed higher-order algorithms.


Sign in / Sign up

Export Citation Format

Share Document