Computation of travelling wave solutions of scalar conservation laws with a stiff source term

2003 ◽  
Vol 32 (8) ◽  
pp. 1161-1178
Author(s):  
Vicente Martı́nez ◽  
Antonio Marquina
Author(s):  
Paolo Baiti

We consider the Cauchy problem for a class of scalar conservation laws with flux having a single inflection point. We prove existence of global weak solutions satisfying a single entropy inequality together with a kinetic relation, in a class of bounded variation functions. The kinetic relation is obtained by the travelling-wave criterion for a regularization consisting of balanced diffusive and dispersive terms. The result is applied to the one-dimensional Buckley-Leverett equation.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1480
Author(s):  
Sivenathi Oscar Mbusi ◽  
Ben Muatjetjeja ◽  
Abdullahi Rashid Adem

The aim of this paper is to find the Noether symmetries of a generalized Benney-Luke equation. Thereafter, we construct the associated conserved vectors. In addition, we search for exact solutions for the generalized Benney-Luke equation through the extended tanh method. A brief observation on equations arising from a Lagrangian density function with high order derivatives of the field variables, is also discussed.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 211-214 ◽  
Author(s):  
Tanki Motsepa ◽  
Chaudry Masood Khalique

AbstractIn this paper, we study a (2+1) dimensional KdV-mKdV equation, which models many physical phenomena of mathematical physics. This equation has two integral terms in it. By an appropriate substitution, we convert this equation into two partial differential equations, which do not have integral terms and are equivalent to the original equation. We then work with the system of two equations and obtain its exact travelling wave solutions in form of Jacobi elliptic functions. Furthermore, we employ the multiplier method to construct conservation laws for the system. Finally, we revert the results obtained into the original variables of the (2+1) dimensional KdV-mKdV equation.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Chaudry Masood Khalique

A coupled Kadomtsev-Petviashvili equation, which arises in various problems in many scientific applications, is studied. Exact solutions are obtained using the simplest equation method. The solutions obtained are travelling wave solutions. In addition, we also derive the conservation laws for the coupled Kadomtsev-Petviashvili equation.


Author(s):  
Brian Hayes ◽  
Michael Shearer

The Riemann initial value problem is studied for scalar conservation laws whose fluxes have a single inflection point. For a regularization consisting of balanced diffusive and dispersive terms, the travelling wave criterion is used to select admissible shocks. In some cases, the Riemann problem solution contains an undercompressive shock. The analysis is illustrated by exploring parameter space for the Buckley–Leverett flux. The boundary of the set of parameters for which there is a physical solution of the Riemann problem for all data is computed. Within the region of acceptable parameters, the solution hasseveral different forms, depending on the initial data; the different forms are illustrated by numerical computations. Qualitatively similar behaviour is observed in Lax–Wendroff approximations of solutions of the Buckley–Leverett equation with no dissipation or dispersion.


Sign in / Sign up

Export Citation Format

Share Document