noether symmetries
Recently Published Documents





2022 ◽  
pp. 136907
Adriano Acunzo ◽  
Francesco Bajardi ◽  
Salvatore Capozziello

Ashfaque H. Bokhari ◽  
Muhammad Farhan ◽  
Tahir Hussain

In this paper, we have studied Noether symmetries of the general Bianchi type I spacetimes. The Lagrangian associated with the most general Bianchi type I metric is used to find the set of Noether symmetry equations. These equations are analyzed using an algorithm, developed in Maple, to get all possible Bianchi type I metrics admitting different Noether symmetries. The set of Noether symmetry equations is then solved for each metric to obtain the Noether symmetry algebras of dimensions 4, 5, 6 and 9.

Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2910
Umara Kausar ◽  
Tooba Feroze

It is known that corresponding to each Noether symmetry there is a conserved quantity. Another class of symmetries that corresponds to conserved quantities is the class of Mei symmetries. However, the two sets of symmetries may give different conserved quantities. In this paper, a procedure of finding approximate Mei symmetries and invariants of the perturbed/approximate Hamiltonian is presented that can be used in different fields of study where approximate Hamiltonians are under consideration. The results are presented in the form of theorems along with their proofs. A simple example of mechanics is considered to elaborate the method of finding these symmetries and the related Mei invariants. At the end, a comparison of approximate Mei symmetries and approximate Noether symmetries is also given. The comparison shows that there is only one common symmetry in both sets of symmetries. Hence, rest of the symmetries in the two sets correspond to two different sets of conserved quantities.

Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2900
Matteo Gorgone ◽  
Francesco Oliveri

In this paper, within the framework of the consistent approach recently introduced for approximate Lie symmetries of differential equations, we consider approximate Noether symmetries of variational problems involving small terms. Then, we state an approximate Noether theorem leading to the construction of approximate conservation laws. Some illustrative applications are presented.

M. Sharif ◽  
M. Zeeshan Gul

This paper investigates the geometry of compact stellar objects via Noether symmetry strategy in the framework of curvature-matter coupled gravity. For this purpose, we assume the specific model of this theory to evaluate Noether equations, symmetry generators and corresponding conserved parameters. We use conserved parameters to examine some fascinating attributes of the compact objects for suitable values of the model parameters. It is analyzed that compact objects in this theory depend on the conserved quantities and model parameters. We find that the obtained solutions provide the viability of this process as they are compatible with the astrophysical data.

2021 ◽  
Vol 36 (24) ◽  
pp. 2150166
Daddy Balondo Iyela ◽  
Jan Govaerts

When discussing consequences of symmetries of dynamical systems based on Noether’s first theorem, most standard textbooks on classical or quantum mechanics present a conclusion stating that a global continuous Lie symmetry implies the existence of a time-independent conserved Noether charge which is the generator of the action on phase space of that symmetry, and which necessarily must as well commute with the Hamiltonian. However this need not be so, nor does that statement do justice to the complete scope and reach of Noether’s first theorem. Rather a much less restrictive statement applies, namely, that the corresponding Noether charge as an observable over phase space may in fact possess an explicit time dependency, and yet define a constant of the motion by having a commutator with the Hamiltonian which is nonvanishing, thus indeed defining a dynamical conserved quantity. Furthermore, and this certainly within the Hamiltonian formulation, the converse statement is valid as well, namely, that any dynamical constant of motion is necessarily the Noether charge of some symmetry leaving the system’s action invariant up to some total time derivative contribution. This contribution revisits these different points and their consequences, straightaway within the Hamiltonian formulation which is the most appropriate for such issues. Explicit illustrations are also provided through three general but simple enough classes of systems.

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1480
Sivenathi Oscar Mbusi ◽  
Ben Muatjetjeja ◽  
Abdullahi Rashid Adem

The aim of this paper is to find the Noether symmetries of a generalized Benney-Luke equation. Thereafter, we construct the associated conserved vectors. In addition, we search for exact solutions for the generalized Benney-Luke equation through the extended tanh method. A brief observation on equations arising from a Lagrangian density function with high order derivatives of the field variables, is also discussed.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Yun-Die Jia ◽  
Yi Zhang

This paper focuses on the exploration of fractional Birkhoffian mechanics and its fractional Noether theorems under quasi-fractional dynamics models. The quasi-fractional dynamics models under study are nonconservative dynamics models proposed by El-Nabulsi, including three cases: extended by Riemann–Liouville fractional integral (abbreviated as ERLFI), extended by exponential fractional integral (abbreviated as EEFI), and extended by periodic fractional integral (abbreviated as EPFI). First, the fractional Pfaff–Birkhoff principles based on quasi-fractional dynamics models are proposed, in which the Pfaff action contains the fractional-order derivative terms, and the corresponding fractional Birkhoff’s equations are obtained. Second, the Noether symmetries and conservation laws of the systems are studied. Finally, three concrete examples are given to demonstrate the validity of the results.

2021 ◽  
Vol 2021 (4) ◽  
Chris D. A. Blair ◽  
Gerben Oling ◽  
Jeong-Hyuck Park

Abstract We explore the notion of isometries in non-Riemannian geometries. Such geometries include and generalise the backgrounds of non-relativistic string theory, and they can be naturally described using the formalism of double field theory. Adopting this approach, we first solve the corresponding Killing equations for constant flat non-Riemannian backgrounds and show that they admit an infinite-dimensional algebra of isometries which includes a particular type of supertranslations. These symmetries correspond to known worldsheet Noether symmetries of the Gomis-Ooguri non-relativistic string, which we now interpret as isometries of its non-Riemannian doubled background. We further consider the extension to supersymmetric double field theory and show that the corresponding Killing spinors can depend arbitrarily on the non-Riemannian directions, leading to “supersupersymmetries” that square to supertranslations.

Sign in / Sign up

Export Citation Format

Share Document