Distributive Normal Forms in First-Order Logic

Author(s):  
Jaakko Hintikka
2015 ◽  
Vol 21 (2) ◽  
pp. 123-163 ◽  
Author(s):  
ROY DYCKHOFF ◽  
SARA NEGRI

AbstractThat every first-order theory has a coherent conservative extension is regarded by some as obvious, even trivial, and by others as not at all obvious, but instead remarkable and valuable; the result is in any case neither sufficiently well-known nor easily found in the literature. Various approaches to the result are presented and discussed in detail, including one inspired by a problem in the proof theory of intermediate logics that led us to the proof of the present paper. It can be seen as a modification of Skolem’s argument from 1920 for his “Normal Form” theorem. “Geometric” being the infinitary version of “coherent”, it is further shown that every infinitary first-order theory, suitably restricted, has a geometric conservative extension, hence the title. The results are applied to simplify methods used in reasoning in and about modal and intermediate logics. We include also a new algorithm to generate special coherent implications from an axiom, designed to preserve the structure of formulae with relatively little use of normal forms.


1999 ◽  
Vol Vol. 3 no. 3 ◽  
Author(s):  
Thomas Schwentick ◽  
Klaus Barthelmann

International audience Building on work of Gaifman [Gai82] it is shown that every first-order formula is logically equivalent to a formula of the form ∃ x_1,...,x_l, \forall y, φ where φ is r-local around y, i.e. quantification in φ is restricted to elements of the universe of distance at most r from y. \par From this and related normal forms, variants of the Ehrenfeucht game for first-order and existential monadic second-order logic are developed that restrict the possible strategies for the spoiler, one of the two players. This makes proofs of the existence of a winning strategy for the duplicator, the other player, easier and can thus simplify inexpressibility proofs. \par As another application, automata models are defined that have, on arbitrary classes of relational structures, exactly the expressive power of first-order logic and existential monadic second-order logic, respectively.


Author(s):  
Víctor Aranda

The aim of this paper is to clarify why propositional logic is Post complete and its weak completeness was almost unnoticed by Hilbert and Bernays, while first-order logic is Post incomplete and its weak completeness was seen as an open problem by Hilbert and Ackermman. Thus, I will compare propositional and first-order logic in the Prinzipien der Mathematik, Bernays’s second Habilitationsschrift and the Grundzüge der Theoretischen Logik. The so called “arithmetical interpretation”, the conjunctive and disjunctive normal forms and the soundness of the propositional rules of inference deserve special emphasis.


2009 ◽  
Vol 19 (12) ◽  
pp. 3091-3099 ◽  
Author(s):  
Gui-Hong XU ◽  
Jian ZHANG

Author(s):  
Tim Button ◽  
Sean Walsh

Chapters 6-12 are driven by questions about the ability to pin down mathematical entities and to articulate mathematical concepts. This chapter is driven by similar questions about the ability to pin down the semantic frameworks of language. It transpires that there are not just non-standard models, but non-standard ways of doing model theory itself. In more detail: whilst we normally outline a two-valued semantics which makes sentences True or False in a model, the inference rules for first-order logic are compatible with a four-valued semantics; or a semantics with countably many values; or what-have-you. The appropriate level of generality here is that of a Boolean-valued model, which we introduce. And the plurality of possible semantic values gives rise to perhaps the ‘deepest’ level of indeterminacy questions: How can humans pin down the semantic framework for their languages? We consider three different ways for inferentialists to respond to this question.


Sign in / Sign up

Export Citation Format

Share Document