Comparative Study Between the Hartree-Fock and Kohn-Sham Models for the Lowest Singlet and Triplet States of the Confined Helium Atom

2009 ◽  
pp. 241-254 ◽  
Author(s):  
Jorge Garza ◽  
Rubicelia Vargas
1976 ◽  
Vol 54 (10) ◽  
pp. 1543-1549 ◽  
Author(s):  
Mary Kuriyan ◽  
Huw O. Pritchard

Variational calculations are reported on the 1sns singlet and triplet states of the helium atom, up to and including n = 26. By suitable choice of terms in the expansion for the wave function, significant economies in computer time are possible, and we quote an example of a 12-term uncorrelated wave function which gives a lower energy than Pekeris' 220-term correlated wave function. The problems of extending these calculations to much higher n (e.g. n > 100) to include states of astrophysical interest are enumerated.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 711 ◽  
Author(s):  
Irene Casademont-Reig ◽  
Eloy Ramos-Cordoba ◽  
Miquel Torrent-Sucarrat ◽  
Eduard Matito

Two of the most popular rules to characterize the aromaticity of molecules are those due to Hückel and Baird, which govern the aromaticity of singlet and triplet states. In this work, we study how these rules fade away as the ring structure increases and an optimal overlap between p orbitals is no longer possible due to geometrical restrictions. To this end, we study the lowest-lying singlet and triplet states of neutral annulenes with an even number of carbon atoms between four and eighteen. First of all, we analyze these rules from the Hückel molecular orbital method and, afterwards, we perform a geometry optimization of the annulenes with several density functional approximations in order to analyze the effect that the distortions from planarity produce on the aromaticity of annulenes. Finally, we analyze the performance of three density functional approximations that employ different percentages of Hartree-Fock exchange (B3LYP, CAM-B3LYP and M06-2X) and Hartree-Fock. Our results reveal that functionals with a low percentage of Hartree-Fock exchange at long ranges suffer from severe delocalization errors that result in wrong geometrical structures and the overestimation of the aromatic character of annulenes.


The radiative corrections of order α 3 rydbergs are evaluated for the ionization energy of the metastable states 2 1 , 3 S, of the helium atom. In the calculation of the average excitation energy k 0 , the main contribution comes from the transition to and ( ms, np ) and ( ms, ∊p ) states. The oscillator strengths for transitions to (1 s, ∊p ), (2 s, ∊p ) and (3 s, ∊p ) states are evaluated by using six-parameter wavefunction for the metastable states and a product of a hydrogenic wavefunction with Z = 2 for the s electron and a wavefunction analogous to the Hartree wavefunction for the excited p electron. Making use of these oscillator strengths and a method used by Pekeris, the values of the average excitation energies for the singlet and triplet states are found to be 77.09 ± 1.6 and 79.84 ± 1.0 rydbergs respectively. With these values of the average excitation energies, the Lamb shift corrections, including the estimate of a α 4 Ry order corrections, to the ionization energies of the singlet and triplet states become – 0.106 ± 0.018 cm -1 and –0.129 ± 0.013 cm –1 respectively. When they are added to the theoretical values of the ionization energies obtained by Pekeris, the values of the ionization energies become 32033.212 ± 0.018 an d 38454.698 ± 0.013 cm -1 compared with Herzberg’s experimental values of 32033.24 ± 0.05 an d 38454.73 ± 0.05 cm -1 for the singlet and triplet states respectively.


Sign in / Sign up

Export Citation Format

Share Document