Genetic Mechanisms of Early Neurogenesis in Drosophila melanogaster

Author(s):  
José A. Campos-Ortega
2021 ◽  
Author(s):  
Mark Phillips ◽  
Kenneth R. Arnold ◽  
Zer Vue ◽  
Heather Beasley ◽  
Edgar Garza Lopez ◽  
...  

Experimental evolution with Drosophila melanogaster has been used extensively for decades to study aging and longevity. In recent years, the addition of DNA and RNA sequencing to this framework has allowed researchers to leverage the statistical power inherent to experimental evolution study the genetic basis of longevity itself. Here we incorporated metabolomic data into to this framework to generate even deeper insights into the physiological and genetic mechanisms underlying longevity differences in three groups of experimentally evolved D. melanogaster populations with different aging and longevity patterns. Our metabolomic analysis found that aging alters mitochondrial metabolism through increased consumption of NAD+ and increased usage of the TCA cycle. Combining our genomic and metabolomic data produced a list of biologically relevant candidate genes. Among these candidates, we found significant enrichment for genes and pathways associated with neurological development and function, and carbohydrate metabolism. While we do not explicitly find enrichment for aging canonical genes, neurological dysregulation and carbohydrate metabolism are both known to be associated with accelerated aging and reduced longevity. Taken together, our results in total provide very plausible genetic mechanisms for what might be driving longevity differences in this experimental system. More broadly, our findings demonstrate the value of combining multiple types of omic data with experimental evolution when attempting to dissect mechanisms underlying complex and highly polygenic traits like aging.


1985 ◽  
Vol 2 (5) ◽  
pp. 291-308 ◽  
Author(s):  
Harald Vassin ◽  
Jost Vielmetter ◽  
Jose A. Campos-ortega

Genetics ◽  
1992 ◽  
Vol 132 (2) ◽  
pp. 505-518 ◽  
Author(s):  
E Knust ◽  
H Schrons ◽  
F Grawe ◽  
J A Campos-Ortega

Abstract Enhancer of split [E(spl)] is one of the neurogenic loci of Drosophila and, as such, is required for normal segregation of neural and epidermal cell progenitors. Genetic observations indicate that the E(spl) locus is in fact a gene complex comprising a cluster of related genes and that other genes of the region are also required for normal early neurogenesis. Three of the genes of the complex were known to encode helix-loop-helix (HLH) proteins and to be transcribed in nearly identical patterns. Here, we show that four other genes in the vicinity also encode HLH proteins and, during neuroblast segregation, three of them are expressed in the same pattern. We show by germ-line transformation that these three genes are also necessary to allow epidermal development of the neuroectodermal cells.


Sign in / Sign up

Export Citation Format

Share Document