scholarly journals Seven genes of the Enhancer of split complex of Drosophila melanogaster encode helix-loop-helix proteins.

Genetics ◽  
1992 ◽  
Vol 132 (2) ◽  
pp. 505-518 ◽  
Author(s):  
E Knust ◽  
H Schrons ◽  
F Grawe ◽  
J A Campos-Ortega

Abstract Enhancer of split [E(spl)] is one of the neurogenic loci of Drosophila and, as such, is required for normal segregation of neural and epidermal cell progenitors. Genetic observations indicate that the E(spl) locus is in fact a gene complex comprising a cluster of related genes and that other genes of the region are also required for normal early neurogenesis. Three of the genes of the complex were known to encode helix-loop-helix (HLH) proteins and to be transcribed in nearly identical patterns. Here, we show that four other genes in the vicinity also encode HLH proteins and, during neuroblast segregation, three of them are expressed in the same pattern. We show by germ-line transformation that these three genes are also necessary to allow epidermal development of the neuroectodermal cells.

1991 ◽  
Vol 11 (5) ◽  
pp. 2913-2917
Author(s):  
F Maschat ◽  
M L Dubertret ◽  
J A Lepesant

The transcription of the P1 gene is induced by 20-hydroxyecdysone in fat bodies of third-instar larvae. Germ line transformation showed that sequences between -138 to +276 contain elements required for a qualitatively correct developmental and hormonal regulation of P1 transcription. Sequences from -138 to -68 are essential for this expression.


1991 ◽  
Vol 11 (5) ◽  
pp. 2913-2917 ◽  
Author(s):  
F Maschat ◽  
M L Dubertret ◽  
J A Lepesant

The transcription of the P1 gene is induced by 20-hydroxyecdysone in fat bodies of third-instar larvae. Germ line transformation showed that sequences between -138 to +276 contain elements required for a qualitatively correct developmental and hormonal regulation of P1 transcription. Sequences from -138 to -68 are essential for this expression.


1987 ◽  
Vol 7 (3) ◽  
pp. 973-981
Author(s):  
E P Hoffman ◽  
S L Gerring ◽  
V G Corces

The effect of various types of DNA sequence alterations on the activity of the ovarian, ecdysterone, and heat-shock-responsive promoters of the Drosophila melanogaster hsp27 gene was studied by P element-mediated germ line transformation. Regions of DNA required for proper expression of the gene under these different conditions were identified. Wild-type levels of transcription during oogenesis are dependent on two elements respectively located within a 64-base-pair (bp) fragment in the transcribed untranslated region and between -227 and -958 bp upstream of the transcription start site. This ovarian expression is particularly sensitive to both chromosomal position effects and an increased distance between the distal upstream promoter element and the TATAA homology. The ecdysterone-mediated expression during metamorphosis is dependent on a 145-bp domain including the TATAA box and additional upstream sequences that augment transcription by two- to five-fold. Finally, sequences necessary for heat shock expression are located much further upstream from hsp27 than those previously found for hsp70, although basal expression was correlated with the presence of more proximal heat shock consensus sequences.


Development ◽  
1993 ◽  
Vol 118 (3) ◽  
pp. 893-901 ◽  
Author(s):  
S.H. Kim ◽  
S.T. Crews

The ventral epidermis of Drosophila melanogaster is derived from longitudinal rows of ectodermal precursor cells that divide and expand to form the ventral embryonic surface. The spitz class genes are required for the proper formation of the larval ventral cuticle. Using a group of enhancer trap lines that stain subsets of epidermal cells, it is shown here that spitz class gene function is necessary for ventral epidermal development and gene expression. Analysis of single-minded mutant embryos implies that ventral epidermal cell fate is influenced by the CNS midline cells.


Gene ◽  
1992 ◽  
Vol 114 (2) ◽  
pp. 187-193 ◽  
Author(s):  
Trevor J. Lockett ◽  
Denise Lewy ◽  
Patricia Holmes ◽  
Kerrie Medveczky ◽  
Robert Saint

1994 ◽  
Vol 14 (9) ◽  
pp. 6398-6408 ◽  
Author(s):  
K H O'Donnell ◽  
C T Chen ◽  
P C Wensink

We identify DNA regions that are necessary for the ubiquitous expression of the Drosophila melanogaster alpha 1-tubulin (alpha 1t) gene. In vitro transcription showed that two upstream regions, tubulin element 1 (TE1 [29 bp]) and tubulin element 2 (TE2 [68 bp]), and a downstream region activate transcription. Germ line transformation demonstrated that these three regions are sufficient to direct the alpha 1t core promoter to begin transcribing at the stage of cellular blastoderm formation and to continue thereafter at high levels in all tissues and developmental stages. Remarkably, mutation of any one of these regions results in high sensitivity to chromosomal position effects, producing different but reproducible tissue-specific patterns of expression in each transformed line. None of these regions behaves as an enhancer in a conventional germ line transformation test. These observations show that these three regions, two of which bind the GAGA transcription factor, act ubiquitously to insulate from position effects and to activate transcription. The results also provide vectors for ubiquitous expression of gene products and for examining silencer activities.


1986 ◽  
Vol 83 (3) ◽  
pp. 701-705 ◽  
Author(s):  
P. H. Gunaratne ◽  
A. Mansukhani ◽  
S. E. Lipari ◽  
H. C. Liou ◽  
D. W. Martindale ◽  
...  

Genetics ◽  
1999 ◽  
Vol 152 (3) ◽  
pp. 1025-1035
Author(s):  
Armin Kasravi ◽  
Marika F Walter ◽  
Stephanie Brand ◽  
James M Mason ◽  
Harald Biessmann

Abstract We present here the molecular cloning and characterization of the mutator2 (mu2) gene of Drosophila melanogaster together with further genetic analyses of its mutant phenotype. mu2 functions in oogenesis during meiotic recombination, during repair of radiation damage in mature oocytes, and in proliferating somatic cells, where mu2 mutations cause an increase in somatic recombination. Our data show that mu2 represents a novel component in the processing of double strand breaks (DSBs) in female meiosis. mu2 does not code for a DNA repair enzyme because mu2 mutants are not hypersensitive to DSB-inducing agents. We have mapped and cloned the mu2 gene and rescued the mu2 phenotype by germ-line transformation with genomic DNA fragments containing the mu2 gene. Sequencing its cDNA demonstrates that mu2 encodes a novel 139-kD protein, which is highly basic in the carboxy half and carries three nuclear localization signals and a helix-loop-helix domain. Consistent with the sex-specific mutant phenotype, the gene is expressed in ovaries but not in testes. During oogenesis its RNA is rapidly transported from the nurse cells into the oocyte where it accumulates specifically at the anterior margin. Expression is also prominent in diploid proliferating cells of larval somatic tissues. Our genetic and molecular data are consistent with the model that mu2 encodes a structural component of the oocyte nucleus. The MU2 protein may be involved in controlling chromatin structure and thus may influence the processing of DNA DSBs.


Genetics ◽  
1992 ◽  
Vol 132 (2) ◽  
pp. 481-503 ◽  
Author(s):  
H Schrons ◽  
E Knust ◽  
J A Campos-Ortega

Abstract The Enhancer of split complex [E(spl)-C] of Drosophila melanogaster is located in the 96F region of the third chromosome and comprises at least seven structurally related genes, HLH-m delta, HLH-m gamma, HLH-m beta, HLH-m3, HLH-m5, HLH-m7 and E(spl). The functions of these genes are required during early neurogenesis to give neuroectodermal cells access to the epidermal pathway of development. Another gene in the 96F region, namely groucho, is also required for this process. However, groucho is not structurally related to, and appears to act independently of, the genes of the E(spl)-C; the possibility is discussed that groucho acts upstream to the E(spl)-C genes. Indirect evidence suggests that a neighboring transcription unit (m4) may also take part in the process. Of all these genes, only gro is essential; m4 is a dispensable gene, the deletion of which does not produce detectable morphogenetic abnormalities, and the genes of the E(spl)-C are to some extent redundant and can partially substitute for each other. This redundancy is probably due to the fact that the seven genes of the E(spl)-C encode highly conserved putative DNA-binding proteins of the bHLH family. The genes of the complex are interspersed among other genes which appear to be unrelated to the neuroepidermal lineage dichotomy.


Sign in / Sign up

Export Citation Format

Share Document