New Observations on Neuronal Organization of Reflexes from Tendon Organ Afferents and their Relation to Reflexes Evoked from Muscle Spindle Afferents

Author(s):  
E. Jankowska
1990 ◽  
Vol 63 (6) ◽  
pp. 1307-1313 ◽  
Author(s):  
B. B. Edin ◽  
A. B. Vallbo

1. One hundred and two single afferents from the finger extensor muscles of humans were studied with the microneurography technique. 2. The afferents were provisionally classified as primary muscle spindle afferents (62/102), secondary spindle afferents (22), and Golgi tendon organ afferents (18) on the basis of their responses to four tests: 1) ramp-and-hold stretch, 2) 20- and 50-Hz small-amplitude sinusoidal stretch superimposed on ramp-and-hold stretch, 3) maximal isometric twitch contraction, and 4) stretch sensitization. 3. The response profiles of the three unit types were analyzed during slowly rising isometric contraction terminating with an abrupt relaxation. About 75% (61/84) of all muscle spindle afferents increased their discharge during isometric contraction, whereas the discharge was reduced for the remaining afferents. All Golgi tendon organs increased their discharge during the contraction. 4. The level of extrafusal contraction at which a spindle afferent increased its discharge rate often varied from trial to trial, speaking against a fixed fusimotor recruitment level of the individual spindle ending. 5. In 70% of the spindle afferents, a distinct burst of impulses appeared when the subject rapidly relaxed after the isometric contraction. The burst was more common and usually much more prominent with primary than secondary afferents, often reaching instantaneous discharge rates well above 100 Hz. 6. Whereas all Golgi tendon organ afferents displayed an increased discharge during the contraction phase, only one of them exhibited a rate acceleration close to the relaxation phase. However, this response could clearly be identified as being of different nature than the spindle bursts.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 63 (6) ◽  
pp. 1297-1306 ◽  
Author(s):  
B. B. Edin ◽  
A. B. Vallbo

1. One hundred and twenty-four muscle afferents from the finger extensor muscles were recorded from the radial nerve in human subjects. 2. The afferents were provisionally classified as muscle spindle primary (78/124) and secondary afferents (25/124), and Golgi tendon organ afferents (21/124), on the basis of their response to 1) maximal twitch contractions, 2) 20- and 50-Hz sinusoids superimposed on ramp-and-hold stretches, 3) stretch sensitization, and 4) isometric contractions and sudden relaxations. 3. Ramp-and-hold stretches at two velocities, 10 and 50 degrees/s, were applied to the appropriate metacarpophalangeal (MCP) joint while the parent muscle remained relaxed. For each unit three discrete parameters were assessed: the presence or absence of 1) an initial burst at the commencement of the ramp stretch, 2) a deceleration response at the beginning of the hold phase, and 3) a prompt silencing at muscle shortening. In addition, two kinds of dynamic indexes were calculated for 79 of the muscle spindle afferents. 4. Most spindle afferents responded readily to stretch, whereas the Golgi tendon organ afferents produced very poor stretch responses. All of them lacked a static response, whereas the dynamic response, when present at all, consisted of only a few impulses. 5. The dynamic index was higher for spindle primaries than for secondaries, and this difference was statistically significant although the distribution was unimodal for spindle afferents as a group. Hence, this parameter was a poor discriminator. 6. Initial bursts, deceleration responses, and silences during imposed shortening were more common in spindle primaries than in secondaries. The differences were significant in all these respects. 7. The three discrete parameters were statistically pairwise independent for the spindle afferents, justifying the combination of the three into a useful battery for discrimination between primary and secondary spindle afferents and the use of this battery as a partial data base for a probability approach towards a solid classification of human muscle afferents.


PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e39140 ◽  
Author(s):  
Katherine A. Wilkinson ◽  
Heidi E. Kloefkorn ◽  
Shawn Hochman

Motor Control ◽  
1973 ◽  
pp. 15-32 ◽  
Author(s):  
O.-J. Grüsser ◽  
Heidemarie Hohne-Zahn ◽  
Samia A. Jahn ◽  
K. Pellnitz

1990 ◽  
Vol 8 ◽  
pp. 165-172
Author(s):  
Tadashi Nagashima ◽  
Takashi Nokubi ◽  
Takashi Morimitsu ◽  
Minoru Yoshida ◽  
Akio Ikehara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document