Chapter 6 Role of superoxide dismutase in ischemic brain injury: reduction of edema and infarction in transgenic mice following focal cerebral ischemia

Author(s):  
P.H. Chan ◽  
H. Kinouchi ◽  
C.J. Epstein ◽  
E. Carlson ◽  
S.F. Chen ◽  
...  
1989 ◽  
Vol 256 (2) ◽  
pp. H589-H593 ◽  
Author(s):  
T. H. Liu ◽  
J. S. Beckman ◽  
B. A. Freeman ◽  
E. L. Hogan ◽  
C. Y. Hsu

Superoxide dismutase and catalase enzymatically scavenge superoxide and hydrogen peroxide, respectively. Conjugation of polyethylene glycol to superoxide dismutase (PEG-SOD) or catalase (PEG-CAT) prolongs the circulatory half-life of the native enzymes and enhances their intracellular access. We studied the protective effect of these free radical scavengers on ischemic brain injury using a rat model of focal cerebral ischemia, which is suitable for therapeutic trials. Intravenous administration of PEG-SOD (10,000 U/kg) and PEG-CAT (10,000 U/kg) before ischemia reduced the infarct volume (treatment, 139 +/- 9 mm3, means +/- SE, N = 38; placebo, 182 +/- 8 mm3, n = 37, P less than 0.002). This finding supports the concept that superoxide and hydrogen peroxide contribute to brain injury following focal cerebral ischemia.


1998 ◽  
Vol 18 (6) ◽  
pp. 609-620
Author(s):  
Hiroyuki Kinouchi ◽  
Hideyuki Kamii ◽  
Shigeki Mikawa ◽  
Charles J. Epstein ◽  
Takashi Yoshimoto ◽  
...  

Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Luther C Pettigrew ◽  
Melissa A Bradley-Whitman ◽  
Mark A Lovell

BACKGROUND: Pre-hospital detection of ischemic brain injury will exclude stroke mimics and refine patient triage. Using “dipstick” immuno-chromatography, we validated a rapid-sequence method to identify visinin-like protein-1 (VILIP-1), a neuronal injury marker, in blood sampled after focal cerebral ischemia in rats. METHODS: Transgenic (Tg) rats were constructed to over-express tumor necrosis factor-alpha (TNFα) in brain. Suture-occlusion of the middle cerebral artery (MCAO) was performed in TNFα-Tg animals and wild type (WT) littermates for 1 hr. Arterial blood was sampled at pre-ischemic baseline, after 60 min of MCAO, and at 15 min or 24 hrs of post-ischemic reperfusion. VILIP-1 immuno-reactivity was normalized to pre-ischemic baseline and compared to sham-ischemic animals. Brain infarct volume was measured at 24 hrs. VILIP-1 immuno-reactivity was then correlated with infarct volume to derive Pearson product moment. RESULTS: VILIP-1 immuno-reactivity was increased after 24 hrs of post-ischemic reperfusion in TNFα-Tg animals (133 ± 13 [SD]% of baseline) compared to sham-ischemic rats (100 ± 22; p ≤ 0.05; ANOVA; n = 5 per group). At 15 min (159 ± 36%) and 24 hrs (above), VILIP-1 expression was greater than pre-ischemic baseline ( p ≤ 0.05). Immuno-reactivity of VILIP-1 at 15-min post-ischemic reperfusion was strongly correlated with infarct volume measured at 24 hrs in TNFα-Tg rats (Pearson 0.79; p ≤ 0.01). CONCLUSIONS: Whole blood immuno-chromatography of VILIP-1 is feasible and correlates positively with infarct volume measured at 24 hrs in the rat. These promising results underscore the need to study VILIP-1 immuno-reactivity as an indicator of ischemic brain injury in the pre-hospital setting.


1998 ◽  
Vol 18 (2) ◽  
pp. 180-185 ◽  
Author(s):  
Gerald P. Schielke ◽  
Guo-Yuan Yang ◽  
Brenda D. Shivers ◽  
A. Lorris Betz

A variety of recent studies suggest a role for both inflammatory cytokines such as interleukin-1 beta (IL-1β), and apoptosis in ischemic brain injury. Because IL-1β converting enzyme (ICE) is required for the conversion of proIL-1β to its biologically active form, and has homology with proteins that regulate apoptosis in invertebrates, we studied the effect of cerebral ischemia on brain injury in mutant mice deficient in the ICE gene (ICE knockout [KO] mice). Focal cerebral ischemia, produced by occlusion of the middle cerebral artery, resulted in brain edema (increased water and sodium content) at 4 hours and a histologically defined brain lesion at 24 hours. Both of these markers of brain injury were significantly reduced in the ICE KO mice as compared to wild-type C57BL/6 mice. Regional cerebral blood flow, determined using the flow tracer, N-isopropyl [methyl 1,3-14C] p-iodoamphetamine (14C-IMP), was similar in the two strains of mice, indicating that the reduced brain injury in the KO mice was not a result of a lesser degree of ischemia. These data show that ICE contributes to the development of ischemic brain damage, and that it plays a role at an early time in the pathologic process. Although the mechanism of this effect is uncertain, our results suggest that pharmacologic inhibition of ICE may be a useful treatment for stroke.


2009 ◽  
Vol 37 (05) ◽  
pp. 867-876 ◽  
Author(s):  
Phil-Ok Koh

A standardized extract of Gingko biloba, EGb 761, has been shown to exert a neuroprotective effect against permanent and transient focal cerebral ischemia. This study investigated whether EGb 761 modulates Bcl-2 family proteins in ischemic brain injury. Male adult rats were treated with EGb 761 (100 mg/kg) or vehicle prior to middle cerebral artery occlusion (MCAO), brain tissues were collected 24 hours after MCAO. EGb761 administration significantly decreased the number of TUNEL-positive cells in the cerebral cortex. Ischemic brain injury induced decrease of Bcl-2 and Bcl- X L levels. EGb 761 prevented not only the injury-induced decrease of Bcl-2 and Bcl- X L levels, but also the injury-induced increase of Bax. Moreover, in the presence of EGb 761, the interaction of Bad and Bcl- X L decreased compared to that of vehicle-treated animals. In addition, EGb 761 prevented the injury-induced increase of cleaved PARP. The finding suggests that EGb 761 prevents cell death against ischemic brain injury and EGb 761 neuroprotection is affected by preventing the injury-induced increase of Bad and Bcl- X L interaction.


Sign in / Sign up

Export Citation Format

Share Document