scholarly journals Double-Strand Break Repair in Yeast Requires Both Leading and Lagging Strand DNA Polymerases

Cell ◽  
1999 ◽  
Vol 96 (3) ◽  
pp. 415-424 ◽  
Author(s):  
Allyson M Holmes ◽  
James E Haber
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joonas A. Jamsen ◽  
Akira Sassa ◽  
David D. Shock ◽  
William A. Beard ◽  
Samuel H. Wilson

AbstractOxidized dGTP (8-oxo-7,8-dihydro-2´-deoxyguanosine triphosphate, 8-oxodGTP) insertion by DNA polymerases strongly promotes cancer and human disease. How DNA polymerases discriminate against oxidized and undamaged nucleotides, especially in error-prone double strand break (DSB) repair, is poorly understood. High-resolution time-lapse X-ray crystallography snapshots of DSB repair polymerase μ undergoing DNA synthesis reveal that a third active site metal promotes insertion of oxidized and undamaged dGTP in the canonical anti-conformation opposite template cytosine. The product metal bridged O8 with product oxygens, and was not observed in the syn-conformation opposite template adenine (At). Rotation of At into the syn-conformation enabled undamaged dGTP misinsertion. Exploiting metal and substrate dynamics in a rigid active site allows 8-oxodGTP to circumvent polymerase fidelity safeguards to promote pro-mutagenic double strand break repair.


Sign in / Sign up

Export Citation Format

Share Document