scholarly journals A Novel Cellular Phenotype for Familial Hypercholesterolemia due to a Defect in Polarized Targeting of LDL Receptor

Cell ◽  
2001 ◽  
Vol 105 (5) ◽  
pp. 575-585 ◽  
Author(s):  
Ulla-Maija Koivisto ◽  
Ann L. Hubbard ◽  
Ira Mellman
Gene ◽  
2013 ◽  
Vol 521 (1) ◽  
pp. 200-203 ◽  
Author(s):  
Muhidien Soufi ◽  
Stephan Rust ◽  
Michael Walter ◽  
Juergen R. Schaefer

1999 ◽  
Vol 45 (9) ◽  
pp. 1424-1430 ◽  
Author(s):  
Sung Han Kim ◽  
Ji Hyun Bae ◽  
Jae Jin Chae ◽  
Un Kyung Kim ◽  
Seong-Joon Choe ◽  
...  

Abstract Background: The LDL receptor is a cell-surface protein that regulates plasma cholesterol by specific uptake of LDL particles from the blood circulation. Familial hypercholesterolemia (FH) results from defective catabolism of LDL, which is caused by mutations in the LDL-receptor gene. Methods: For the rapid and reliable detection of large rearrangements in the LDL-receptor gene, we established a screening method based on long-distance PCR as an alternative to Southern-blot hybridization. Using long-distance PCR, 45 unrelated Korean subjects heterozygous for FH were screened to assess the frequency and nature of major structural rearrangements in the LDL-receptor gene. Results: Two different deletion mutations, FH6 (same type as FH3 and FH311) and FH 32, were detected in four families by long-distance PCR. Detailed restriction mapping and sequence analysis showed that FH6 was a 5.71-kb deletion extending from intron 8 to intron 12 and that FH32 was a 2-kb deletion extending from intron 6 to intron 7. Sequence analysis for the breakpoints of all deletions detected in Korean FH patients showed that only the left arms of the Alu repetitive sequences were involved in the deletion event. Conclusions: The screening method based on long-distance PCR provides a powerful strategy for the detection of large rearrangements in the LDL-receptor gene and is a rapid and reliable screening alternative to Southern-blot hybridization.


Author(s):  
Vladimir O. Konstantinov

Familial hypercholesterolemia (FH) is one of the most prevalent genetic disorders leading to premature atherosclerosis and coronary heart disease. The main cause of FH is a mutation in the LDL-receptor gene that leads to loss of function of these receptors causing high levels of blood cholesterol. The diagnosis of FH is not very easy. Wide screenings are needed to reveal high levels of LDL cholesterol among “healthy” population. If the patient has MI or stroke at an early age, high levels of LDL cholesterol, and tendon xanthomas, the diagnosis of FH becomes much more clear. Genetic testing is a gold standard in the diagnosis of FH. There are several factors, influencing the time course of FH. Smoking males with low levels of HDL cholesterol have an extremely higher risk of death than nonsmoking females with high HDL cholesterol. Management of FH includes low cholesterol diet, statin and ezetimibe treatment, PCSK inhibitors, and LDL aphaeresis. Early and effective treatment influences much the prognosis in FH patients.


2009 ◽  
Vol 400 (1-2) ◽  
pp. 42-47 ◽  
Author(s):  
Hayato Tada ◽  
Masa-aki Kawashiri ◽  
Tohru Noguchi ◽  
Mika Mori ◽  
Masayuki Tsuchida ◽  
...  

2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Masahiro Koseki ◽  
Shizuya Yamashita

Familial hypercholesterolemia (FH) is an inherited disorder, mainly caused by defects in low-density lipoprotein (LDL) receptor gene. The patients are characterized by high LDL cholesterol levels in the blood and premature cardiovascular disease. Although most of heterozygous FH patients are usually treated with statin, ezetimibe and bile acid sequestrants, homozygous FH patients are resistant to drug therapy. Therefore, in Japan, many of homozygous FH patients are treated by LDL-apheresis. LDL-apheresis is a great procedure to remove LDL cholesterol from the blood and contribute to improve prognosis of homozygous FH patients. However, the effect of removing LDL cholesterol is temporary and still not enough. As a definitive therapy, liver transplantation therapy could be one of options to recover LDL receptor, but donor is limited in Japan. Therefore, based on the increase of the evidence about the safety of mesenchymal stem cells and percutaneous transhepatic portal approach in islet transplantation, we have developed a cell transplantation therapy with allogeneic adipose tissue-derived multilineage progenitor cells (ADMPCs), as an alternative treatment instead of liver transplantation. Our group has already proved that xenogenic transplantation of human ADMPCs into Watanabe heritable hyperlipidemic rabbits resulted in significant reductions in total cholesterol, and the reductions were observed within 4 weeks and maintained for 12 weeks. These results suggested that hADMPC transplantation could correct the metabolic defects and be a novel therapy for inherited liver diseases. Here, we report a protocol for the first-in-human clinical trial, which has been approved by the institutional review board and Ministry of Health, Labour and Welfare, Japan.


Sign in / Sign up

Export Citation Format

Share Document