cellular phenotype
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 78)

H-INDEX

42
(FIVE YEARS 6)

2022 ◽  
pp. canres.1843.2021
Author(s):  
Katrina M Lappin ◽  
Eliana M Barros ◽  
Satpal S Jhujh ◽  
Gareth W Irwin ◽  
Hayley McMillan ◽  
...  

2022 ◽  
Author(s):  
Marion A. L. Picard ◽  
Fiona Leblay ◽  
Cecile Cassan ◽  
Mathilde Decourcelle ◽  
Anouk Willemsen ◽  
...  

Redundancy in the genetic code allows for differences in transcription and/or translation efficiency between mRNA molecules carrying synonymous polymorphisms, with potential phenotypic impact at the molecular and at the organismal level. A combination of neutral and selective processes determines the global genome codon usage preferences, as well as local differences between genes within a genome and between positions along a single gene. The relative contribution of evolutionary forces at shaping codon usage bias in eukaryotes is a matter of debate, especially in mammals. The main riddle remains understanding the sharp contrast between the strong molecular impact of gene expression differences arising from codon usage preferences and the thin evidence for codon usage selection at the organismal level. Here we report a multiscale analysis of the consequences of alternative codon usage on heterologous gene expression in human cells. We generated synonymous versions of the shble antibiotic resistance gene, fused to a fluorescent reporter, and expressed independently them in human HEK293 cells. We analysed: i) mRNA-to-DNA and protein-to-mRNA ratios for each shble version; ii) cellular fluorescence, using flow cytometry, as a proxy for single cell-level construct expression; and iii) real-time cell proliferation in absence or presence of antibiotic, as a proxy for the cellular fitness. Our results show that differences in codon usage preferences in our focal gene strongly impacted the molecular and the cellular phenotype: i) they elicited large differences in mRNA and in protein levels, as well in mRNA-to-protein ratio; ii) they introduced splicing events not predicted by current algorithms; iii) they lead to reproducible phenotypic heterogeneity as different multimodal distributions of cellular fluorescence EGFP; iv) they resulted in a trade-off between burden of heterologous expression and antibiotic resistance. While certain codon usage-related variables monotonically correlated with protein expression, other variables (e.g. CpG content or mRNA folding energy) displayed a bell-like behaviour. We interpret that codon usage preferences strongly shape the molecular and cellular phenotype in human cells through a direct impact on gene expression.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Gabriel Therizols ◽  
Zeina Bash-Imam ◽  
Baptiste Panthu ◽  
Christelle Machon ◽  
Anne Vincent ◽  
...  

AbstractMechanisms of drug-tolerance remain poorly understood and have been linked to genomic but also to non-genomic processes. 5-fluorouracil (5-FU), the most widely used chemotherapy in oncology is associated with resistance. While prescribed as an inhibitor of DNA replication, 5-FU alters all RNA pathways. Here, we show that 5-FU treatment leads to the production of fluorinated ribosomes exhibiting altered translational activities. 5-FU is incorporated into ribosomal RNAs of mature ribosomes in cancer cell lines, colorectal xenografts, and human tumors. Fluorinated ribosomes appear to be functional, yet, they display a selective translational activity towards mRNAs depending on the nature of their 5′-untranslated region. As a result, we find that sustained translation of IGF-1R mRNA, which encodes one of the most potent cell survival effectors, promotes the survival of 5-FU-treated colorectal cancer cells. Altogether, our results demonstrate that “man-made” fluorinated ribosomes favor the drug-tolerant cellular phenotype by promoting translation of survival genes.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 78
Author(s):  
Nuno Maia ◽  
Maria João Nabais Sá ◽  
Cláudia Oliveira ◽  
Flávia Santos ◽  
Célia Azevedo Soares ◽  
...  

We describe an infant female with a syndromic neurodevelopmental clinical phenotype and increased chromosome instability as cellular phenotype. Genotype characterization revealed heterozygous variants in genes directly or indirectly linked to DNA repair: a de novo X-linked HDAC8 pathogenic variant, a paternally inherited FANCG pathogenic variant and a maternally inherited BRCA2 variant of uncertain significance. The full spectrum of the phenotype cannot be explained by any of the heterozygous variants on their own; thus, a synergic contribution is proposed. Complementation studies showed that the FANCG gene from the Fanconi Anaemia/BRCA (FA/BRCA) DNA repair pathway was impaired, indicating that the variant in FANCG contributes to the cellular phenotype. The patient’s chromosome instability represents the first report where heterozygous variant(s) in the FA/BRCA pathway are implicated in the cellular phenotype. We propose that a multigenic contribution of heterozygous variants in HDAC8 and the FA/BRCA pathway might have a role in the phenotype of this neurodevelopmental disorder. The importance of these findings may have repercussion in the clinical management of other cases with a similar synergic contribution of heterozygous variants, allowing the establishment of new genotype–phenotype correlations and motivating the biochemical study of the underlying mechanisms.


2021 ◽  
Vol 23 (1) ◽  
pp. 199
Author(s):  
Zhen-Shan Yang ◽  
Hai-Yang Pan ◽  
Wen-Wen Shi ◽  
Si-Ting Chen ◽  
Ying Wang ◽  
...  

Decidualization is essential to the establishment of pregnancy in rodents and primates. Laminin A5 (encoding by Laminin α5) is a member of the laminin family, which is mainly expressed in the basement membranes. Although laminins regulate cellular phenotype maintenance, adhesion, migration, growth, and differentiation, the expression, function, and regulation of laminin A5 during early pregnancy are still unknown. Therefore, we investigated the expression and role of laminin A5 during mouse and human decidualization. Laminin A5 is highly expressed in mouse decidua and artificially induced deciduoma. Laminin A5 is significantly increased under in vitro decidualization. Laminin A5 knockdown significantly inhibits the expression of Prl8a2, a marker for mouse decidualization. Progesterone stimulates the expression of laminin A5 in ovariectomized mouse uterus and cultured mouse stromal cells. We also show that progesterone regulates laminin A5 through the PKA-CREB-C/EBPβ pathway. Laminin A5 is also highly expressed in human pregnant decidua and cultured human endometrial stromal cells during in vitro decidualization. Laminin A5 knockdown by siRNA inhibits human in vitro decidualization. Collectively, our study reveals that laminin A5 may play a pivotal role during mouse and human decidualization via the PKA-CREB-C/EBPβ pathway.


2021 ◽  
pp. 101462
Author(s):  
Paulína Káňovičová ◽  
Petra Čermáková ◽  
Dominika Kubalová ◽  
Lenka Bábelová ◽  
Petra Veselá ◽  
...  

2021 ◽  
Vol 22 (22) ◽  
pp. 12285
Author(s):  
Jenq-Shyong Chan ◽  
Yang Wang ◽  
Virgilius Cornea ◽  
Prabir Roy-Chaudhury ◽  
Begoña Campos

Background: Arteriovenous fistula (AVF) stenosis remains an important cause of AVF maturation failure, for which there are currently no effective therapies. We examined the pattern and phenotype of cellular proliferation at different timepoints in a mouse model characterized by a peri-anastomotic AVF stenosis. Methods: Standard immunohistochemical analyses for cellular proliferation and macrophage infiltration were performed at 2, 7 and 14 d on our validated mouse model of AVF stenosis to study the temporal profile, geographical location and cellular phenotype of proliferating and infiltrating cells in this model. Results: Adventitial proliferation and macrophage infiltration (into the adventitia) began at 2 d, peaked at 7 d and then declined over time. Surprisingly, there was minimal macrophage infiltration or proliferation in the neointimal region at either 7 or 14 d, although endothelial cell proliferation increased rapidly between 2 d and 7 d, and peaked at 14 d. Conclusions: Early and rapid macrophage infiltration and cellular proliferation within the adventitia could play an important role in the downstream pathways of both neointimal hyperplasia and inward or outward remodelling.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3058
Author(s):  
Constantin Blöchl ◽  
Di Wang ◽  
Katarina Madunić ◽  
Guinevere S. M. Lageveen-Kammeijer ◽  
Christian G. Huber ◽  
...  

Acute myeloid leukemia (AML) is characterized by a dysregulated expansion of poorly differentiated myeloid cells. Although patients are usually treated effectively by chemotherapy, a high rate of relapsed or refractory disease poses a major hurdle in its treatment. Recently, several studies have proposed implications of protein glycosylation in the pathobiology of AML including chemoresistance. Accordingly, associations have been found between specific glycan epitopes and the outcome of the disease. To advance this poorly studied field, we performed an exploratory glycomics study characterizing 21 widely used AML cell lines. Exploiting the benefits of porous graphitized carbon chromatography coupled to tandem mass spectrometry (PGC nano-LC-MS2), we qualitatively and quantitatively profiled N- and O-linked glycans. AML cell lines exhibited distinct glycan fingerprints differing in relevant glycan traits correlating with their cellular phenotype as classified by the FAB system. By implementing transcriptomics data, specific glycosyltransferases and hematopoietic transcription factors were identified, which are candidate drivers of the glycan phenotype of these cells. In conclusion, we report the varying expression of glycan structures across a high number of AML cell lines, including those associated with poor prognosis, identified underlying glycosyltransferases and transcription factors, and provide insights into the regulation of the AML glycan repertoire.


2021 ◽  
Author(s):  
Felix Lussier ◽  
Martin Schroeter ◽  
Nicolas J Diercks ◽  
Kevin Jahnke ◽  
Cornelia Weber ◽  
...  

Bottom-up synthetic biology thrives to reconstruct basic cellular processes into a minimalist cellular replica to foster their investigation in greater details with a reduced number of variables. Among these cellular features, the endomembrane system is an important aspect of cells which is at the origin of many of their functions. Still, the reconstruction of these inner compartments within a lipid-based vesicle remains challenging and poorly controlled. Herein, we report the use of pH as external trigger to self-assemble compartmentalized giant unilamellar vesicles (GUVs) by either bulk, or droplet-based microfluidics. By co-encapsulating pH sensitive small unilamellar vesicles (SUVs), negatively charged SUVs and/or proteins, we show that acidification of the droplets efficiently produces GUVs while sequestrating the co-encapsulated material with flexibility and robustness. The method enables the simultaneous reconstruction of more than a single cellular phenotype from the bottom-up, corresponding to an important advancement in the current status quo of bottom-up synthetic biology.


2021 ◽  
Author(s):  
Nichelle I. Winters ◽  
Chase J. Taylor ◽  
Christopher S. Jetter ◽  
Jane E. Camarata ◽  
Austin J. Gutierrez ◽  
...  

ABSTRACTPrecision-cut lung slices (PCLS) are increasingly utilized for ex vivo disease modeling, but a high-resolution characterization of cellular phenotype stability in PCLS has not been reported. Comparing the single-cell transcriptomic profile of human PCLS after five days of culture to freshly isolated human lung tissue, we found striking changes in endothelial cell and alveolar epithelial cell programs, reflecting both injury and pathways activated in static culture, while immune cell frequencies and programs remained largely intact and similar to the native lung. These cellular dynamics should be considered when utilizing PCLS as a model of the human lung.


Sign in / Sign up

Export Citation Format

Share Document