Involvement of adrenergic system on the cortical granule exocytosis and polyspermic penetration during in vitro fertilization of porcine oocytes

1997 ◽  
Vol 47 (1) ◽  
pp. 207
Author(s):  
N-H. Kim ◽  
H. Song ◽  
S.J. Song ◽  
D.B. Koo ◽  
H.T. Lee ◽  
...  
1991 ◽  
Vol 113 (4) ◽  
pp. 769-778 ◽  
Author(s):  
T Whalley ◽  
I Crossley ◽  
M Whitaker

We have investigated the role of protein phosphorylation in the control of exocytosis in sea urchin eggs by treating eggs with a thio-analogue of ATP. ATP gamma S (adenosine 5'-O-3-thiotriphosphate) is a compound which can be used as a phosphoryl donor by protein kinases, leading to irreversible protein thiophosphorylation (Gratecos, D., and E.H. Fischer. 1974. Biochem. Biophys. Res. Commun. 58:960-967). Microinjection of ATP gamma S inhibits cortical granule exocytosis, but has no effect on the sperm-egg signal transduction mechanisms which normally cause exocytosis by generating an increase in [Ca2+]i. ATP gamma S requires cytosolic factors for its inhibition of cortical granule exocytosis: it does not affect exocytosis when applied directly to the isolated exocytotic apparatus. Our data suggest that ATP gamma S irreversibly inhibits exocytosis via thiophosphorylation of proteins associated with the egg cortex. We have identified two thiophosphorylated proteins (33 and 27 kD) that are associated with the isolated exocytotic apparatus. They may mediate the inhibition of exocytosis by ATP gamma S. In addition, we show that okadaic acid, an inhibitor of phosphoprotein phosphatases, prevents cortical granule exocytosis at fertilization without affecting calcium mobilization. Like ATP gamma S, okadaic acid has no effect on exocytosis in vitro. Our results suggest that an inhibitory phosphoprotein can obstruct calcium-stimulated exocytosis in sea urchin eggs; on the other hand, they do not readily support the idea that a protein phosphatase is an essential component of the mechanism controlling exocytosis.


Zygote ◽  
2001 ◽  
Vol 9 (3) ◽  
pp. 251-259 ◽  
Author(s):  
J. Oterino ◽  
G. Sánchez Toranzo ◽  
L. Zelarayán ◽  
J.N. Valz-Gianinet ◽  
M.I. Bühler

Denuded Bufo arenarum oocytes matured in vitro by progesterone treatment exhibited abnormal segmentation due to the penetration of more than one sperm. These oocytes were able to respond to activation stimuli and exhibited the external signs characteristic of activation. However, the prevention of polyspermy was not effective in these oocytes, which exhibited numerous sperm in their cytoplasm. The aim of this work was to analyse the cortical reaction in polyspermic Bufo arenarum oocytes matured in vitro. The result indicate that the cortical reaction of these oocytes seems to occur with a chronological sequence similar to that described for ovoposited oocytes of this species. In addition, when, 1 min after pricking, cortical granule exocytosis occurred, the oocytes became refractory to sperm entry, suggesting that they are able to establish a slow block to polyspermy.


Methods ◽  
1994 ◽  
Vol 6 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Nadeem I. Shafi ◽  
Steven S. Vogel ◽  
Joshua Zimmerberg

2019 ◽  
Author(s):  
Hagen Körschgen ◽  
Christian Jäger ◽  
Kathrin Tan ◽  
Mirko Buchholz ◽  
Walter Stöcker ◽  
...  

<p>Despite huge progress in hormonal therapy and improved in vitro fertilization methods, the success rates in infertility treatment are still limited. A recently discovered mechanism revealed the interplay between the plasma protein fetuin-B and the cortical granule-based proteinase ovastacin as novel key-mechanism in the regulation of fertilization. Upon sperm-egg fusion, cleavage of a distinct zona pellucida component by ovastacin destroys the sperm receptor, enhances zona robustness and eventually provides a definitive block against polyspermy. An untimely onset of this zona hardening prior to fertilization would consequently result in infertility. Physiologically, this process is controlled by fetuin-B, an endogenous ovastacin inhibitor. Here we aimed at the discovery of small molecular inhibitors of ovastacin that could mimic the effect of fetuin-B. Hence, these compounds could be useful lead structures for the development of specific ovastacin inhibitors that can be utilized in infertility treatment or in vitro fertilization.</p>


Zygote ◽  
2008 ◽  
Vol 16 (4) ◽  
pp. 303-308 ◽  
Author(s):  
F. Bonilla ◽  
M. T. Ajmat ◽  
G. Sánchez Toranzo ◽  
L. Zelarayán ◽  
J. Oterino ◽  
...  

SummaryIn the fertilization of most animals, egg activation is accompanied by an increase in cytoplasmatic Ca2+; however, the mechanism through which the fertilizing sperm induce this phenomenon is still controversial. An increase in intracellular free Ca2+ is required to trigger egg activation events, a process that includes cortical granule exocytosis, resumption and completion of meiosis and DNA replication, and culminates in the first mitotic cleavage. In this work, we investigated the effect of microinjection and incubation of different fractions of homologous sperm extract on the activation of Bufo arenarum oocytes matured in vitro. Two heat treatment-sensitive fractions obtained by chromatography were able to induce oocyte activation. The sperm fraction, which contained a 24 kDa protein, induced 90% activation when it was microinjected into the oocytes. Whilst the sperm fraction, which contained a 36 kDa protein, was able to induce about 70% activation only when it was applied on the oocyte surface.


Zygote ◽  
2006 ◽  
Vol 14 (2) ◽  
pp. 97-106 ◽  
Author(s):  
J. Oterino ◽  
G. Sánchez Toranzo ◽  
L. Zelarayán ◽  
M.T. Ajmat ◽  
F. Bonilla ◽  
...  

SummaryDuring activation of amphibian eggs, cortical granule exocytosis causes elaborate ultrastructural changes in the vitelline envelope. These changes involve modifications in the structure of the vitelline envelope and formation of a fertilization envelope (FE) that can no longer be penetrated by sperm. In Bufo arenarum, as the egg traverses the oviduct, the vitelline envelope is altered by a trypsin-like protease secreted by the oviduct, which induces an increased susceptibility of the vitelline envelope to sperm lysins. Full-grown oocytes of B. arenarum, matured in vitro by progesterone, are polyspermic, although cortical granule exocytosis seems to occur within a normal chronological sequence. These oocytes can be fertilized with or without trypsin treatment, suggesting that the vitelline envelope is totally sperm-permeable. Vitelline envelopes without trypsin treatment cannot retain either gp90 or gp96. This suggests that these glycoproteins are involved in the block to polyspermy and that trypsin treatment of matured in vitro oocytes before insemination is necessary to enable vitelline envelopes to block polyspermy. The loss of the binding capacity in vitelline envelopes isolated from B. arenarum oocytes matured in vitro with trypsin treatment and activated by electric shock suggests that previous trypsin treatment is a necessary step for sperm block to occur. When in vitro matured oocytes were incubated with the product of cortical granules obtained from in vitro matured oocytes (vCGP), vitelline envelopes with trypsin treatment were able to block sperm entry. These oocytes exhibited the characteristic signs of activation. These results support the idea that B. arenarum oocytes can be activated by external stimuli and suggest the presence of unknown oocyte surface receptors linked to the activation machinery in response to fertilization. Electrophoretic profiles obtained by SDS-PAGE of solubilized vitelline envelopes from oocytes matured in vitro revealed the conversion of gp40 (in vitro matured oocytes, without trypsin treatment) to gp38 (ascribable to trypsin activity or cortical granule product activity, CGP) and the conversion of gp70 to gp68 (ascribable to trypsin activity plus CGP activity). Taking into account that only the vitelline envelopes of in vitro matured oocytes with trypsin treatment and activated can block sperm entry, we may suggest that the conversion of gp70 to gp68 is related to the changes associated with sperm binding.


Sign in / Sign up

Export Citation Format

Share Document