scholarly journals Finite linear spaces admitting a two-dimensional projective linear group

2003 ◽  
Vol 103 (2) ◽  
pp. 209-222 ◽  
Author(s):  
Weijun Liu
2021 ◽  
Vol 28 (01) ◽  
pp. 33-38
Author(s):  
Shaojun Dai ◽  
Shangzhao Li

This article is a contribution to the study of the automorphism groups of 3-[Formula: see text] designs. Let [Formula: see text] be a non-trivial 3-[Formula: see text] design. If a two-dimensional projective linear group [Formula: see text] acts flag-transitively on [Formula: see text], then [Formula: see text] is a 3-[Formula: see text] or 3-[Formula: see text] design.


1969 ◽  
Vol 21 ◽  
pp. 106-135 ◽  
Author(s):  
Norbert H. J. Lacroix

The problem of classifying the normal subgroups of the general linear group over a field was solved in the general case by Dieudonné (see 2 and 3). If we consider the problem over a ring, it is trivial to see that there will be more normal subgroups than in the field case. Klingenberg (4) has investigated the situation over a local ring and has shown that they are classified by certain congruence groups which are determined by the ideals in the ring.Klingenberg's solution roughly goes as follows. To a given ideal , attach certain congruence groups and . Next, assign a certain ideal (called the order) to a given subgroup G. The main result states that if G is normal with order a, then ≧ G ≧ , that is, G satisfies the so-called ladder relation at ; conversely, if G satisfies the ladder relation at , then G is normal and has order .


2017 ◽  
Vol 16 (06) ◽  
pp. 1750110
Author(s):  
Haiyan Guan ◽  
Shenglin Zhou

The work studies the line-transitive point-imprimitive automorphism groups of finite linear spaces, and is underway on the situation when the numbers of points are products of two primes. Let [Formula: see text] be a non-trivial finite linear space with [Formula: see text] points, where [Formula: see text] and [Formula: see text] are two primes. We prove that if [Formula: see text] is line-transitive point-imprimitive, then [Formula: see text] is solvable.


1991 ◽  
Vol 109 (2) ◽  
pp. 287-297 ◽  
Author(s):  
Yu Chen

Let GL2(R) be the general linear group of 2 × 2 invertible matrices in M2(R) over a commutative ring R with 1 and SL2(R) be the special linear group consisting of 2 × 2 matrices over R with determinant 1. In this paper we determine the homomorphisms from GL2 and SL2, as well as their projective groups, over Laurent polynomial rings to those groups over Gaussian domains, i.e. unique factorization domains (cf. Theorems 1, 2, 3 below). We also consider more generally the homomorphisms of non-projective groups over commutative rings containing a field which are generated by their units (cf. Theorems 4 and 5). So far the homomorphisms of two-dimensional linear groups over commutative rings have only been studied in some specific cases. Landin and Reiner[7] obtained the automorphisms of GL2(R), where R is a Euclidean domain generated by its units. When R is a type of generalized Euclidean domain with a degree function and with units of R and 0 forming a field, Cohn[3] described the automorphisms of GL2(R). Later, Cohn[4] applied his methods to the case of certain rings of quadratic integers. Dull[6] has considered the automorphisms of GL2(R) and SL2(R), along with their projective groups, provided that R is a GE-ring and 2 is a unit in R. McDonald [9] examined the automorphisms of GL2(R) when R has a large unit group. The most recent work of which we are aware is that of Li and Ren[8] where the automorphisms of E2(R) and GE2(R) were determined for any commutative ring R in which 2, 3 and 5 are units.


Sign in / Sign up

Export Citation Format

Share Document