Interpretation of experimental results from moderate-power in-pile testing of a PuErZr-oxide inert matrix fuel

2003 ◽  
Vol 44 (3) ◽  
pp. 150
2003 ◽  
Vol 30 (3) ◽  
pp. 287-299 ◽  
Author(s):  
Christian Hellwig ◽  
Uwe Kasemeyer ◽  
Guido Ledergerber ◽  
Byung-Ho Lee ◽  
Young-Woo Lee ◽  
...  

Author(s):  
R. Calabrese ◽  
F. Vettraino ◽  
T. Tverberg

Inert matrix fuels are a possible option to reduce separated plutonium stockpiles by burning it in LWR fleet. A high burning efficiency targeted by preventing new plutonium build-up under irradiation (U-free fuel), a proved high radiation damage and leaching resistance are fundamental requirements when a once-through fuel cycle strategy is planned. Among other options, both calcia-stabilised zirconia (csz) and thoria fulfill these criteria standing as the most promising matrices to host plutonium. While several in-pile tests concerning thoria fuels are found, calcia-stabilised zirconia under-irradiation performance is still to be fully assessed, with this regard the thermal conductivity, markedly lower than UOX and MOX cases, plays a fundamental role. For this reason, ENEA has conceived a comparative in-pile testing of three different U-free inert matrix fuel concepts, that have been performed in the OECD Halden HBWR (IFA-652 experiment). The discharge burnup accomplished about 90–97% of the 45 MWd/kgUeq target under typical LWR irradiation conditions. The test-rig is a six-rod bundle loaded with IM, IMT and T innovative fuels. IM and T fuels have, respectively, csz and thoria as matrix, the fissile phase being HEU oxide (UO2 93% 235U enriched). IMT is a ternary fuel composed by csz+thoria matrix and HEU oxide as fissile phase. Thoria is added in IMT fuel to improve the low IM reactivity feedback coefficients. Pins are instrumented providing fuel centerline temperature, pin inner pressure and fuel stack elongation measurements. Our purpose is to investigate the key processes of IMF under-irradiation behaviour by means of the TRANSURANUS code. Thermal conductivity and its degradation with burnup, densification-swelling response and FGR are tentatively modelled in the burnup domain of IFA-652. In particular it is pointed out the effects of pellet geometry and fuel microstructures in the IM and IMT cases. The consistency of our results is discussed aiming at understanding the in-pile response, as a fundamental step, in the perspective of future deployment of the nuclear fuels we are dealing with Notwithstanding this ambitious objective, it is clear, however, that these results rely on a limited data set and that, as TRANSURANUS is a semi-empirical code mostly tailored for commercial fuels, the modelling of the IMF is still a work in progress.


Author(s):  
R. Calabrese ◽  
F. Vettraino ◽  
T. Tverberg

Inert matrix fuels (IMFs) are a possible option to reduce separated plutonium stockpiles by burning it in light water reactor (LWR) fleet. A high burning efficiency targeted by preventing new plutonium buildup under irradiation (U-free fuel), a proved high radiation damage, and leaching resistance are fundamental requirements when a once-through fuel cycle strategy is planned. Among other options, both calcia-stabilized zirconia (CSZ) and thoria fulfill these criteria standing as the most promising matrices to host plutonium. While several in-pile tests concerning thoria fuels are found, calcia-stabilized zirconia under-irradiation performance is still to be fully assessed; with this regard the thermal conductivity, markedly lower than the uranium oxide (UOX) and mixed oxide (MOX) cases, plays a fundamental role. For this reason, ENEA has conceived a comparative in-pile testing of three different U-free inert matrix fuel concepts, which have been performed in the OECD Halden HBWR (IFA-652 experiment). The discharge burnup accomplished about 90–97% of the 45MWd∕kgUeq target under typical LWR irradiation conditions. The test rig is a six-rod bundle loaded with IM, IMT, and T innovative fuels. IM and T fuels have, respectively, CSZ and thoria as matrices, the fissile phase being the high enriched uranium (HEU) oxide (UO2 93% U235 enriched). IMT is a ternary fuel composed by CSZ+thoria matrix and HEU oxide as a fissile phase. Thoria is added in IMT fuel to improve the low IM reactivity feedback coefficients. Pins are instrumented providing fuel centerline temperature, pin inner pressure, and fuel stack elongation measurements. Our purpose is to investigate the key processes of IMF under-irradiation behavior by means of the TRANSURANUS fuel performance code. Thermal conductivity and its degradation with burnup, densification-swelling response, and fission gas release (FGR) are tentatively modeled in the burnup range of IFA-652. In particular, the effects of pellet geometry and fuel microstructures in the IM and IMT cases are pointed out. The consistency of our results is discussed aiming at understanding the in-pile response, as a fundamental step, in the perspective of future deployment of the nuclear fuels we are dealing with. Notwithstanding this ambitious objective, it is clear, however, that these results rely on a limited data set and that, as TRANSURANUS is a semi-empirical code mostly tailored for commercial fuels, the modeling of the IMF is still a work in progress.


2006 ◽  
Vol 48 (6) ◽  
pp. 590-598 ◽  
Author(s):  
N. Kamel ◽  
H. Aït-Amar ◽  
Z. Kamel ◽  
N. Souami ◽  
S. Telmoune ◽  
...  

1998 ◽  
Vol 540 ◽  
Author(s):  
C. Degueldre ◽  
M. Pouchon ◽  
M. Doebli ◽  
G. Ledergerber

AbstractA zirconia based ceramic is foreseen as an inert matrix fuel for burning excess plutonium in light water nuclear reactors. For reactor safety reasons the behaviour of volatile fission products such as cesium and iodine must be studied since a retention of fission products is favourable for licensing the studied inert matrix fuel. In this study, implantation of Cs and I was performed into polycrystalline (Zr0.85, Y0.15)O1.925 samples. The implantation depth was selected on the basis of the ability to observe by Rutherford backscattering spectroscopy (RBS) the behaviour of Cs and I after treatment. With a 1 MeV incident energy, the ions are implanted at a depth of 200 nm as predicted by TRIM. After implantations full quantification of I and Cs concentration profiles was performed by RBS. The implantation profiles are measured as a function of sample temperature during stepwise heating programs. It is interesting to observe retention of Cs and I at relatively high temperature (e.g. for 2 h, below 900 K for Cs and below 1400 K for I). This behaviour is likely to be due to the size and interactions of these species in the zirconia solid solution.


2006 ◽  
Vol 352 (1-3) ◽  
pp. 291-299 ◽  
Author(s):  
Ch. Hellwig ◽  
M. Streit ◽  
P. Blair ◽  
T. Tverberg ◽  
F.C. Klaassen ◽  
...  

2003 ◽  
Vol 319 ◽  
pp. 37-43 ◽  
Author(s):  
M.A. Pouchon ◽  
M. Nakamura ◽  
Ch. Hellwig ◽  
F. Ingold ◽  
C. Degueldre

Sign in / Sign up

Export Citation Format

Share Document