06/01590 Pure hydrogen production by PEM electrolysis for hydrogen energy

2006 ◽  
Vol 47 (4) ◽  
pp. 246-247
2021 ◽  
Vol 288 ◽  
pp. 01074
Author(s):  
Antonina Filimonova ◽  
Andrey Chichirov ◽  
Natalya Chichirova ◽  
Artem Filimonov ◽  
Alexandr Pechenkin

Green hydrogen is a promising solution for a decarbonized energy system, and in 2020 the use of hydrogen has increased dramatically around the world. In order to draw attention to the problem of hydrogen energy in Russia and the Republic of Tatarstan, the article analyzes the development paths and main opportunities for the production, transportation, and use of hydrogen at the enterprises of Tatarstan, and calculates the economic efficiency of the “green” hydrogen production by electrolysis at TPPs with CCGTs in Tatarstan. METHODS. Research methods are based on the analysis of literature data and mathematical calculations. RESULTS. Tatarstan, as one of the leading economically developed regions of Russia, could take part in the “green” hydrogen production, the electrochemical equipment design for its production, the development of technologies for the fuel cells use, research and training of highly qualified specialists in the field of hydrogen energy. According to the calculations, the production of the most environmentally friendly hydrogen at TPPs with CCGT in Tatarstan will currently cost an average of 2 euros per kilogram, which is significantly lower than the existing market value. CONCLUSION. Tatarstan can become a competitive region for the “green” hydrogen production and distribution. The main areas of activity should be the pure hydrogen production, the industrial production of freight transport on fuel cells, the production of megawatt-class electrolysers, the utilization of hydrogen-containing petroleum gases at TPPs in gas turbines or in combined cycle power plants with fuel cells.


Author(s):  
A. Iulianelli ◽  
◽  
G. Bagnato ◽  
A. Iulianelli ◽  
A. Vita Vita ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yingjie Yang ◽  
Yanhui Yu ◽  
Jing Li ◽  
Qingrong Chen ◽  
Yanlian Du ◽  
...  

AbstractThe investigation of highly effective, durable, and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) is a prerequisite for the upcoming hydrogen energy society. To establish a new hydrogen energy system and gradually replace the traditional fossil-based energy, electrochemical water-splitting is considered the most promising, environmentally friendly, and efficient way to produce pure hydrogen. Compared with the commonly used platinum (Pt)-based catalysts, ruthenium (Ru) is expected to be a good alternative because of its similar hydrogen bonding energy, lower water decomposition barrier, and considerably lower price. Analyzing and revealing the HER mechanisms, as well as identifying a rational design of Ru-based HER catalysts with desirable activity and stability is indispensable. In this review, the research progress on HER electrocatalysts and the relevant describing parameters for HER performance are briefly introduced. Moreover, four major strategies to improve the performance of Ru-based electrocatalysts, including electronic effect modulation, support engineering, structure design, and maximum utilization (single atom) are discussed. Finally, the challenges, solutions and prospects are highlighted to prompt the practical applications of Ru-based electrocatalysts for HER.


Author(s):  
Jin Iwatsuki ◽  
Shinji Kubo ◽  
Seiji Kasahara ◽  
Nobuyuki Tanaka ◽  
Hiroki Noguchi ◽  
...  

The Japan Atomic Energy Agency (JAEA) is conducting research and development on nuclear hydrogen production using High Temperature Gas-cooled Reactor and thermochemical water-splitting Iodine-Sulfur (IS) process aiming to develop large-scale hydrogen production technology for “hydrogen energy system”. In this paper, the present status of R&D on IS process at JAEA is presented which focuses on examining integrity of such components as chemical reactors, separators, etc. Based on previous screening of materials of construction mainly from the viewpoint of corrosion resistance in the harsh process conditions of IS process, it was planned to fabricate the IS components and examine their integrity in the process environments. At present, among the components of IS process plant consisting of three chemical reaction sections, i.e., the Bunsen reaction section, the sulfuric acid decomposition section and the hydrogen iodide decomposition section, key components in the Bunsen reaction section was fabricated.


Sign in / Sign up

Export Citation Format

Share Document