process plant
Recently Published Documents


TOTAL DOCUMENTS

689
(FIVE YEARS 115)

H-INDEX

26
(FIVE YEARS 3)

2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Dongqiao Bai ◽  
Qi Yang ◽  
Jian Zhang ◽  
Shouzhi Li

The objective of this study is to propose a solution for process plant upgradation becoming extinct due to obsoleteness of spares. The study will help in reliability, availability, and maintainability (RAM) based upgradation of control system of process plants in developing countries. Available options for plant upgradation are compact control, modular, and semiautomatic. RAM based upgradation provides solution which is high in reliability and availability (usually all parts are replaced with upgraded and compatible technology) and is easy to maintain throughout the service life of process plant. Case study for stacker and reclaimer of cement plant upgradation is considered to both implement and evaluate the idea. Upgradation methodology is finalized by expert’s feedback regarding selection of hardware with respect to availability, market survey to validate the opinion, and economical availability viability of selected hardware. Pre- and postupgradation scenarios are analyzed to validate the implementation of study and conclude the expected outcomes. The process plant upgradation yielded a cost-effective solution to the problem with automation increasing by 17%, plant maintainability increasing by 80%, and downtime of plant decreasing by 17%. Among all available options, modular design Op1 is considered the best choice that can satisfy RAM criteria.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 617
Author(s):  
P. Arun Mozhi Devan ◽  
Fawnizu Azmadi Hussin ◽  
Rosdiazli B. Ibrahim ◽  
Kishore Bingi ◽  
M. Nagarajapandian ◽  
...  

This paper proposes a novel hybrid arithmetic–trigonometric optimization algorithm (ATOA) using different trigonometric functions for complex and continuously evolving real-time problems. The proposed algorithm adopts different trigonometric functions, namely sin, cos, and tan, with the conventional sine cosine algorithm (SCA) and arithmetic optimization algorithm (AOA) to improve the convergence rate and optimal search area in the exploration and exploitation phases. The proposed algorithm is simulated with 33 distinct optimization test problems consisting of multiple dimensions to showcase the effectiveness of ATOA. Furthermore, the different variants of the ATOA optimization technique are used to obtain the controller parameters for the real-time pressure process plant to investigate its performance. The obtained results have shown a remarkable performance improvement compared with the existing algorithms.


2022 ◽  
pp. oemed-2021-107970
Author(s):  
Elena Zaballa ◽  
Georgia Ntani ◽  
E Clare Harris ◽  
Anne Lübbeke ◽  
Nigel K Arden ◽  
...  

ObjectivesTo investigate the rates of return to work and workability among working-age people following total hip arthroplasty (THA).MethodsParticipants from the Geneva Arthroplasty Registry and the Clinical Outcomes for Arthroplasty Study aged 18–64 years when they had primary THA and with at least 5 years’ follow-up were mailed a questionnaire 2017–2019. Information was collected about preoperative and post-THA employment along with exposure to physically demanding activities at work or in leisure. Patterns of change of job were explored. Survival analyses using Cox proportional hazard models were created to explore risk factors for having to stop work because of difficulties with the replaced hip.ResultsIn total, 825 returned a questionnaire (response 58%), 392 (48%) men, mean age 58 years, median follow-up 7.5 years post-THA. The majority (93%) of those who worked preoperatively returned to work, mostly in the same sector but higher rates of non-return (36%–41%) were seen among process, plant and machine operatives and workers in elementary occupations. 7% reported subsequently leaving work because of their replaced hip and the risk of this was strongly associated with: standing >4 hours/day (HR 3.81, 95% CI 1.62 to 8.96); kneeling/squatting (HR 3.32, 95% CI 1.46 to 7.55) and/or carrying/lifting ≥10 kg (HR 5.43, 95% CI 2.29 to 12.88).ConclusionsIt may be more difficult to return to some (particularly physically demanding) jobs post-THA than others. Rehabilitation may need to be targeted to these types of workers or it may be that redeployment or job change counselling are required.


2022 ◽  
Vol 354 ◽  
pp. 00009
Author(s):  
Vlad Mihai Pasculescu ◽  
Emilian Ghicioi ◽  
Ligia Ioana Tuhut ◽  
Adrian Bogdan Simon-Marinica ◽  
Dragos Pasculescu

One of the most important tools for improving the OHS level in process industries is represented by risk analysis and assessment. Within industrial units in operation or in the ones which find themselves in the design phase, risk assessment is carried out for determining the hazards which may occur and which may lead to unwanted events, such as hazardous toxic releases, fires and explosions. Accidental releases of toxic/flammable/explosive substances may have serious consequences on workers or on the neighbouring population, therefore the need to establish safety areas based on best practices in the field and on scientific grounds is fully justified. Pressure tanks containing hazardous materials represent one of the most relevant industrial facilities within process plants, being most of the time exposed to hazardous toxic releases, fire and explosion risks. The current study aims to evaluate the consequences and discuss the safety distances required in case of an accidental release of a hazardous material from a tank located within a process plant, using process analysis software tools. Accident scenarios are modelled for comparison purposes with consequence modelling software widely used in safety engineering.


2022 ◽  
pp. 495-517
Author(s):  
Moe Toghraei
Keyword(s):  

2021 ◽  
Author(s):  
Mohamed Ibrahim Mohamed ◽  
Ahmed Mahmoud El-Menoufi ◽  
Eman Abed Ezz El-Regal ◽  
Ahmed Mohamed Ali ◽  
Khaled Mohamed Mansour ◽  
...  

Abstract Field development planning of gas condensate fields using numerical simulation has many aspects to consider that may lead to a significant impact on production optimization. An important aspect is to account for the effects of network constraints and process plant operating conditions through an integrated asset model. This model should honor proper representation of the fluid within the reservoir, through the wells and up to the network and facility. Obaiyed is one of the biggest onshore gas field in Egypt, it is a highly heterogeneous gas condensate field located in the western desert of Egypt with more than 100 wells. Three initial condensate gas ratios are existing based on early PVT samples and production testing. The initial CGR values are as following;160, 115 and 42 STB/MMSCF. With continuous pressure depletion, the produced hydrocarbon composition stream changes, causing a deviation between the design parameters and the operating parameters of the equipment within the process plant, resulting in a decrease in the recovery of liquid condensate. Therefore, the facility engineers demand a dynamic update of a detailed composition stream to optimize the system and achieve greater economic value. The best way to obtain this compositional stream is by using a fully compositional integrated asset model. Utilizing a fully compositional model in Obaiyed is challenging, computationally expensive, and impractical, especially during the history match of the reservoir numerical model. In this paper, a case study for Obaiyed field is presented in which we used an alternative integrated asset modeling approach comprising a modified black-oil (MBO) that results in significant timesaving in the full-field reservoir simulation model. We then used a proper de-lumping scheme to convert the modified black oil tables into as many components as required by the surface network and process plant facility. The results of proposed approach are compared with a fully compositional approach for validity check. The results clearly identified the system bottlenecks. The model enables the facility engineers to keep the conditions of the surface facility within the optimized operating envelope throughout the field's lifetime and will be used to propose new locations and optimize the tie-in location of future wells in addition to providing flow assurance indications throughout the field's life and under different network configurations.


2021 ◽  
Author(s):  
Siew Hiang Khor ◽  
Jacek Dudek ◽  
Piotr Wojcik ◽  
Krzysztof Pietrzyk ◽  
Daniel Podsobinski ◽  
...  

Abstract Integrated field management is a key initiative recognised by many operators that helps delivering the promise of digital to meet their business strategic objectives of increased hydrocarbon production, reduced exploration and appraisal costs, and sustained development and operation costs. This paper presents how an integrated asset model has been developed for the largest oilfield in Poland to enable a comprehensive validation of its current development plan and operating strategy to ensure safe operation; assessment of other feasible development scenarios to fully realise its potential and paving the path to digital oilfield. A proven integrated asset modeling approach has been adopted to bring a complex reservoir, multiple interdependent wells, pipelines networks, process models together into one single platform. The integrated modeling platform included both gas and water reinjection network models to provide a pore to process closed loop solution. Development of this integrated reservoir-wells-pipelines-network-process facility-water and gas reinjection network models focused to provide all the vital valuable inputs to better field management, fast and accurate decision-making, optimal safe operation in meeting the set seasonal sales contract. Assessments of production operation strategy and field development scenarios were conducted at full field level from reservoir to process plant, accounting wells, pipelines, process handling capacities, the complete system constraints and back pressure effects of all involved components. The availability of fully integrated asset model with pore to process solution enables engineers to better understand the current well performance and production potentials; to ensure a safe and optimal process plant operation. The model helped to identify bottlenecks imposed by the existing pipelines network and process facility; it also enabled the asset team to confirm the existing development plan was not optimal. Other feasible planning scenarios which could further enhance the overall asset productivity were identified, i.e. via determining location of infill wells and which unused idle producers to be converted to gas or water injectors. The study demonstrated a comprehensive validation of the existing development and operation strategy was achievable with the approach. The paper describes how the developed integrated asset model enables the asset team to validate the existing operating strategy and field development scenario of the studied onshore brownfield; to further enhance asset productivity and to achieve efficient field management by adjusting the operating condition in meeting the seasonal sales contract. The integrated asset model also helps to evaluate and to analyse forecasts of different development scenarios including infill drilling and adding new wells and other enhanced oil recovery (EOR) techniques to achieve an ultimate recovery and asset economics.


Sign in / Sign up

Export Citation Format

Share Document