Kinetics of lipase-catalyzed esterification in organic media: Correct model and solvent effects on parameters

1999 ◽  
Vol 24 (8-9) ◽  
pp. 463-470 ◽  
Author(s):  
Anja E.M. Janssen ◽  
Birte J. Sjursnes ◽  
Alexander V. Vakurov ◽  
Peter J. Halling
1963 ◽  
Vol 41 (6) ◽  
pp. 1525-1530 ◽  
Author(s):  
H. R. Allcock

The kinetics of alkaline cleavage of o-nitrobenzyltrimethylsilane were examined in aqueous dioxane media. At high water concentrations, increases in solvent polarity retard the cleavage, as required by a mechanism involving charge dispersion in the transition state. At high dioxane concentrations, solvent polarity increases are accompanied by increases in the rate of reaction, a result which may reflect association between the solvent components.


Author(s):  
Alexander P. Demchenko ◽  
Oksana I. Rusyn ◽  
Alexey M. Egorov ◽  
Vladimir I. Tishkov

2013 ◽  
Vol 67 (4) ◽  
Author(s):  
Ahmad Mohamad ◽  
Mohamed Adam

AbstractThree ligands of 2-pyridinylmethylene-8-quinolinyl (L1), methyl-2-pyridinylmethylene-8-quinolinyl (L2), and phenyl-2-pyridinylmethylene-8-quinolinyl (L3), Schiff bases were synthesised by direct condensation of 8-aminoquinoline with 2-pyridinecarboxaldehyde, 2-acetylpyridine, or 2-benzoylpyridine. They coordinated to Fe(II) ion in a 1: 2 mole ratio followed by treatment with iodide ions affording complexes with a general formula [Fe(L)2]I2·2H2O, (L = L1, L2, or L3). Spectrophotometric evaluation of the kinetics of base catalysed hydrolysis of these complex cations was carried out with an aqueous solution of NaOH in different ratios of water/methanol binary mixtures. Kinetics of the hydrolysis followed the rate law (k 2[OH−] + k 3[OH−]2)[complex]. Reactivity trends and their rate constants were compared and discussed in terms of ligand structure and solvation parameters. The methanol ratio affects the hydrolysis as a co-solvent which was analysed into initial and transition state components. The increase in the rate constant of the base hydrolysis of Fe(II) complexes, as the ratio of methanol increases, is predominantly caused by the strong effect of the organic co-solvent on the transition states.


Sign in / Sign up

Export Citation Format

Share Document