Linear and nonlinear interactions of surface waves with bodies by a three-dimensional Rankine panel method

1997 ◽  
Vol 19 (5-6) ◽  
pp. 235-249 ◽  
Author(s):  
Yonghwan Kim ◽  
David C. Kring ◽  
Paul D. Sclavounos
1998 ◽  
Vol 42 (02) ◽  
pp. 113-119
Author(s):  
D. C. Kring

This study demonstrates that a bounded, physically relevant solution does exist at the so-called T = Uω/g = 1/4 resonance in the linear seakeeping problem for a realistic ship with forward speed, U, frequency of encounter, ω, and gravitational acceleration, g. The solution of the seakeeping problem by a linear, three dimensional, time-domain Rankine panel method, validated through numerical analysis, testing, and comparison to physical experiments, supports this claim. The solution can also be obtained with equal validity through frequencies both above and below the critical frequency.


Author(s):  
Babak Ommani ◽  
Odd M. Faltinsen

In linear Rankine panel method, the discrete linear dispersion relation is solved on a discrete free-surface to capture the free-surface waves generated due to wave-body interactions. Discretization introduces numerical damping and dispersion, which depend on the discretization order and the chosen methods for differentiation in time and space. The numerical properties of a linear Rankine panel method, based on a direct boundary integral formulation, for capturing two and three dimensional free-surface waves were studied. Different discretization orders and differentiation methods were considered, focusing on the linear distribution and finite difference schemes. The possible sources for numerical instabilities were addressed. A series of cases with and without forward speed was selected, and numerical investigations are presented. For the waves in three dimensions, the influence of the panels’ aspect ratio and the waves’ angle were considered. It has been shown that using the cancellation effects of different differentiation schemes the accuracy of the numerical method could be improved.


1993 ◽  
Vol 13 (1-2) ◽  
pp. 12-28 ◽  
Author(s):  
Jan Broeze ◽  
Edwin F. G. van Daalen ◽  
Pieter J. Zandbergen

2021 ◽  
Vol 9 (1) ◽  
pp. 76
Author(s):  
Duoc Nguyen ◽  
Niels Jacobsen ◽  
Dano Roelvink

This study aims at developing a new set of equations of mean motion in the presence of surface waves, which is practically applicable from deep water to the coastal zone, estuaries, and outflow areas. The generalized Lagrangian mean (GLM) method is employed to derive a set of quasi-Eulerian mean three-dimensional equations of motion, where effects of the waves are included through source terms. The obtained equations are expressed to the second-order of wave amplitude. Whereas the classical Eulerian-mean equations of motion are only applicable below the wave trough, the new equations are valid until the mean water surface even in the presence of finite-amplitude surface waves. A two-dimensional numerical model (2DV model) is developed to validate the new set of equations of motion. The 2DV model passes the test of steady monochromatic waves propagating over a slope without dissipation (adiabatic condition). This is a primary test for equations of mean motion with a known analytical solution. In addition to this, experimental data for the interaction between random waves and a mean current in both non-breaking and breaking waves are employed to validate the 2DV model. As shown by this successful implementation and validation, the implementation of these equations in any 3D model code is straightforward and may be expected to provide consistent results from deep water to the surf zone, under both weak and strong ambient currents.


1971 ◽  
Vol 38 (4) ◽  
pp. 899-905 ◽  
Author(s):  
L. B. Freund

Three-dimensional wave propagation in an elastic half space is considered. The half space is traction free on half its boundary, while the remaining part of the boundary is free of shear traction and is constrained against normal displacement by a smooth, rigid barrier. A time-harmonic surface wave, traveling on the traction free part of the surface, is obliquely incident on the edge of the barrier. The amplitude and the phase of the resulting reflected surface wave are determined by means of Laplace transform methods and the Wiener-Hopf technique. Wave propagation in an elastic half space in contact with two rigid, smooth barriers is then considered. The barriers are arranged so that a strip on the surface of uniform width is traction free, which forms a wave guide for surface waves. Results of the surface wave reflection problem are then used to geometrically construct dispersion relations for the propagation of unattenuated guided surface waves in the guiding structure. The rate of decay of body wave disturbances, localized near the edges of the guide, is discussed.


Author(s):  
W. D. McKee

AbstractWaves in a rotating, stratified fluid of variable depth are considered. The perturbation pressure is used throughout as the dependent variable. This proves to have some advantages over the use of the vertical velocity. Some previous three-dimensional solutions for internal waves in a wedge are shown to be incorrect and the correct solutions presented. A WKB analysis is then performed for the general problem and the results compared with the exact solutions for a wedge. The WKB solution is also applied to long surface waves on a rotating ocean.


2005 ◽  
Author(s):  
Paulo Henriques Iscold Andrade De Oliveira ◽  
Marcos Vinícius Bortolus

Sign in / Sign up

Export Citation Format

Share Document