Fatigue damage in two step loading of 316L steel. I. Evolution of persistent slip bands Polák, J., Vasek, A. and Obrtlik, K. Fatigue Fract. Eng. Mater. Struct. (1996) 19 (2–3), 147–155

1997 ◽  
Vol 19 (10) ◽  
pp. 722
2013 ◽  
Vol 592-593 ◽  
pp. 785-788
Author(s):  
Jiří Man ◽  
Anja Weidner ◽  
Petr Klapetek ◽  
Jaroslav Polák

Flat specimen of 316L steel was cyclically pre-deformed with constant plastic strain amplitude to early stage of fatigue life relevant to the period of cyclic strain localization and fatigue crack initiation. To document slip activity and reversibility/irreversibility of persistent slip bands (PSBs) in situ experiments in the high-resolution SEMFEG under special imaging conditions were performed. The half-and full-cycle slip activity and distribution of plastic strain within PSBs in individual grains were investigated via slip steps generated in half-and full-cycle deformation after intermediate vibration polishing. After completion of in situ tests the surface topography in identical locations was quantitatively documented using atomic force microscopy (AFM).


Author(s):  
N. Y. Jin

Localised plastic deformation in Persistent Slip Bands(PSBs) is a characteristic feature of fatigue in many materials. The dislocation structure in the PSBs contains regularly spaced dislocation dipole walls occupying a volume fraction of around 10%. The remainder of the specimen, the inactive "matrix", contains dislocation veins at a volume fraction of 50% or more. Walls and veins are both separated by regions in which the dislocation density is lower by some orders of magnitude. Since the PSBs offer favorable sites for the initiation of fatigue cracks, the formation of the PSB wall structure is of great interest. Winter has proposed that PSBs form as the result of a transformation of the matrix structure to a regular wall structure, and that the instability occurs among the broad dipoles near the center of a vein rather than in the hard shell surounding the vein as argued by Kulmann-Wilsdorf.


1982 ◽  
Vol 30 (3) ◽  
pp. 711-718 ◽  
Author(s):  
O.B Pedersen ◽  
A.T Winter

Author(s):  
Alexander Victorovich Gonchar ◽  
Konstantin Vladimirovich Kurashkin ◽  
Olga Vyacheslavovna Andreeva ◽  
Maxim Sergeevich Anosov ◽  
Vyacheslav Alexandrovich Klyushnikov

2016 ◽  
Vol 258 ◽  
pp. 526-529 ◽  
Author(s):  
Veronika Mazánová ◽  
Milan Heczko ◽  
Ivo Kuběna ◽  
Jaroslav Polák

Two fatigued materials with f.c.c. lattice, i.e. pure polycrystalline copper and austenitic Sanicro 25 stainless steel, were subjected to the study of the persistent slip markings (PSMs) developed on the surface of the suitably oriented grains. They were observed using scanning electron microscopy (SEM) and thin surface FIB lamellae were prepared and studied by transmission electron microscopy (TEM). The aim was to correlate the specimen surface profile with the underlying internal dislocation structure. The localization of the intensive cyclic slip into persistent slip bands (PSBs) of the material was observed and associated with the PSMs on the specimen surface. Extrusions, intrusions and the dislocation structure appertaining to them were analysed, documented and discussed in relation to the models of fatigue crack initiation.


Sign in / Sign up

Export Citation Format

Share Document